
MODELLING TRAFFIC POLLUTION IN TORONTO 19 

MODELLING THE INTRA-URBAN VARIABILITY OF AMBIENT TRAFFIC POLLUTION IN 
TORONTO, CANADA 
 
 
M. Jerrett,1  M.A. Arain, P. Kanaroglou, B. Beckerman, D. Crouse,,2 N.L. Gilbert,3 J.R. Brook,4 N. Finkelstein,2 

M.M. Finkelstein5 
 
 
 
 
 
 
ABSTRACT 
 
The objective of the paper is to model determinants of intra-urban variation in ambient concentrations of nitrogen 
dioxide (NO2) in Toronto, Canada, with a land use regression (LUR) model. Although researchers have conducted 
similar studies in Europe, this work represents the first attempt in a North American setting to characterize variation 
in traffic pollution through the LUR method. NO2 samples were collected over two weeks using duplicate two-sided 
Ogawa passive diffusion samplers at 95 locations across Toronto. Independent variables employed in subsequent 
regression models as predictors of NO2 were derived by the Arc 8 geographic information system (GIS). Some 85 
indicators of land use, traffic, population density, and physical geography were tested. The final regression model 
yielded a coefficient of determination (R2) of 0.69. For the traffic variables, density of 24-hour traffic counts and 
road measures display positive associations. For the land use variables, industrial land use and counts of dwellings 
within 2000 m of the monitoring location were positively associated with NO2. Locations up to 1500 m downwind of 
major expressways had elevated NO2 levels. The results suggest that a good predictive surface can be derived for 
North American cities with the LUR method. The predictive maps from the LUR appear to capture small-area 
variation in NO2 concentrations. These small-area variations in traffic pollution are probably important to the 
exposure experience of the population and may detect health effects that would have gone unnoticed with other 
exposure estimates. 
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INTRODUCTION 
 
Policymakers and scientists have shown growing interest in the health effects of chronic exposure to ambient air 
pollution. Traffic-related air pollution is of particular interest from a regulatory perspective because the demand for 
transportation will probably outpace improvements in vehicle technologies over the next decade (Delucchi, 2000). 
European studies reporting large health effects for persons living close to major roads have also heightened concern 
about traffic pollution (Hoek et al., 2002). In spite of the interest in traffic pollution sparked by these coalescing 
concerns, uncertainties in exposure assessment methodologies continue to raise questions about the reliability and 
accuracy of risk estimates from chronic air pollution studies. This scientific uncertainty impedes efforts by 
policymakers to implement effective traffic pollution control programs.  
 
In this context, it was sought to model determinants of intra-urban variation in ambient concentrations of nitrogen 
dioxide (NO2) in Toronto, Canada, with a land use regression (LUR) model. NO2, an important inorganic gas, serves 
as a good indicator of intra-urban traffic pollution (Niewenhuijsen, 2000). Although researchers have conducted 
similar studies in Europe, this work represents the first attempt in a North American setting to characterize variation 
in traffic pollution through the LUR method.  
 
Background 
 
LUR employs the pollutant of interest as the dependent variable and proximate land use, traffic, and physical 
environmental variables as independent predictors. Thus the methodology seeks to predict pollution concentrations at 
a given site based on surrounding land use and traffic characteristics. Specifically, this method uses measured 
pollution concentrations (y) at locations (s) as the response variable and land use types (x) within circular areas 
around s (called buffers) as predictors of the measured concentrations (see Figure 1). The incorporation of land use 
variables into the interpolation algorithm detects small-area localized variations in air pollution more effectively than 
standard methods of interpolation such as kriging (Briggs et al., 1997; Briggs et al., 2000; Lebret et al., 2000).  
 
To date, LUR studies of criteria air pollutants have been conducted exclusively in Europe. Two studies (Briggs et al., 
1997; Lebret et al., 2000) were part of the Small Area Variation in Air pollution Health (SAVIAH) Project that 
examined traffic-related air pollution in four European cities (Amsterdam, Huddersfield, Prague, Poznan). An 
updated model described by Briggs et al. (2000) investigates traffic-related air pollution in four United Kingdom 
(UK) urban areas (Huddersfield, Hammersmith and Ealing, Northampton, and Sheffield). The independent variables 
used for the prediction of mean NO2 were road traffic volume, land-use type, and elevation. These variables 
produced good predictions with coefficient of determination (R2) values ranging from 0.79 - 0.87.  
 
More recently, Brauer et al. (2003) compared traffic-related PM2.5 air pollution models in multiple European cities 
using the LUR technique. In each of the study cities, investigators fit two types of models: one available through a 
geographic information system (GIS) environment and another that included additional variables not available in the 
GIS. The results obtained for the Netherlands,6 Munich, and Stockholm in the GIS environment showed R2 values of 
0.81, 0.67 and 0.66 for particle filter absorbance, respectively. The alternate model or “best” model included 
variables such as high traffic locations and street canyons. This model produced results with better R2 values 
respectively of 0.90, 0.83, and 0.76.  
 
Although no North American studies are directly analogous to the European studies, one American study has used 
the LUR approach to model variability in carbon dioxide (Wentz et al., 2002). This study was more concerned with 
understanding the land use and vegetative characteristics associated with this greenhouse gas rather than assessing 
exposures directly related to health effects. The results were more modest than in the European studies discussed 
above, with R2 values ranging from 0.54-0.74. These results raise questions about whether the LUR method will 
perform adequately in North American cities, particularly for traffic pollutants such as NO2 that display significant 
variation over scales as small as 50 metres (Hewitt, 1991).  
 

                                                 
6 Multiples sites across many cities in the Netherlands, too numerous to mention, were sampled for this study. 
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Figure 1: Elements of a land use regression model showing monitoring locations for NO2 as the response 

variable and land use characteristics within buffers as the predictor or independent variables. 
 
 
In addition to these empirical results, other differences in land use and traffic distinguish newer North American 
cities from those in Europe that evolved earlier into major conurbations. Fowler (1992) outlines these land use and 
transportation characteristics as deconcentrated, decentralized, large scale, homogenous and segregated. Compared to 
European centres, North American cities overall have lower population densities (deconcentrated), and a greater 
proportion of the population lives in suburban areas outside the city centre (decentralized). Moreover, cities in North 
America tend to have land use developments that occupy large tracts of land for single land use types, making their 
land use homogenous and large-scale (e.g., large residential subdivisions of many thousand houses, huge commercial 
shopping centres, and large industrial zones). And, individual land use types are segregated from each other creating 
a need for automotive travel between commercial and residential areas. All of these factors contribute to higher 
levels of automobile use (Newman and Kenworthy, 1989), energy consumption (Hough, 1995), and subsequent 
higher levels of pollution emissions. Each of these contrasts raises questions about the applicability or adaptability of 
the LUR methods developed in Europe to North America.  
 
METHODS 
 
This section outlines the study setting, the data sources used in the analyses, and the methods used to estimate NO2 
concentrations. NO2 measurements are technically “mixing ratios,” not concentrations, as these values do not 
incorporate a mass weight. For ease of reading and by convention, the wording concentration has been used in the 
remainder of this article. 
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Study Area 
 
Toronto is the provincial capital of Ontario and Canada’s largest city (estimated population: 2.6 million people, 
Statistics Canada, 2001; approximate area: 633 km2). It is located on the north shore of Lake Ontario (situated at 43o 
39’ N, 79o 23’ W) with a climate classified in the “Humid East” region of temperate North America (Getis and Getis, 
1995). Similar to other large cities in North America, many expressways traverse the Toronto landscape, including 
some of the busiest in North America (e.g., Highway 401 has peak flows of about 400,000 vehicles per day).  
 
Data - Measurements and Preparation of the Dependent Variable (NO2)  
 
NO2 concentrations were measured for a two week period from September 9 to 25, 2002 at 100 locations across 
Toronto. NO2 was selected to proxy for traffic related air pollution because it is relatively inexpensive to measure 
and has been used widely as a metric of exposure to traffic emissions (Briggs et al., 1997). To capture small-area 
variation in the NO2 concentrations, 100 sampling locations across the city were used. NO2 may display significant 
differences on scales as small as 50 m (Hewitt, 1991), and hence a dense monitoring network is needed to measure 
these small-area variations. This number is in line with the study by Lebret et al. (2000), that used between 70 and 80 
NO2 monitors for measurements in Amsterdam, Netherlands (land area of 25km2), and Huddersfield, UK (land area 
of 300km2), considering Toronto has a larger land area of 633km2. Sampling locations were selected using a 
population-weighted location-allocation model based on potential NO2 variability and the density of children aged 0-
6, as this exposure assessment represents the first stage of a childhood asthma study (Kanaroglou et al., 2003). The 
outcome of using a location-allocation model is a sampling network that better captures the inherent variability in 
city-wide exposures.  
 
OgawaTM passive samplers were used to measure concentrations of NO2. Two-sided samplers were deployed in pairs 
(yielding four observations per site) at a height of 2.5 meters because this was the first time that Ogawa NO2 
monitors were used for this type of ambient monitoring. The deployment of samplers took less than 72 hours. All 
samplers were removed 14 days after their installation. The nitrite content on collection pads was determined by ion 
chromatography (Gilbert et al., 2003). For each location, the arithmetic mean, standard deviation, and coefficient of 
variation of NO2 results were calculated.  
 
Only five of the 100 samplers deployed were removed due to vandalism or invalid measurements, leaving 95 
observations for analysis. Figure 2 illustrates the locations of these 95 monitors against the backdrop of different land 
uses. Additionally, one more sample was removed from the analysis. It was a significantly high outlier, which further 
investigation revealed the presence of an active construction site in proximity to the monitor over the sampling 
period.  
 
Collected NO2 data were then checked thoroughly for consistency and reliability prior to analysis. There were two 
criteria used for this initial assessment. First, each site had to have at least two valid measurements. Sites with only 
one valid measurement were excluded from the analysis, as there was no means to verify the concentration observed 
with duplicate observations. Second, the coefficient of variation among observations at a given site (COV = standard 
deviation/mean) had to be less than 0.25 to count as valid. If the COV was greater than 0.25, then the observation 
that created the greatest amount of variability was removed and the first criterion was applied again. For cases with 
COV of 0.25 or greater, this process was performed until there were only two measurements remaining at each 
location. If COV remained greater than 0.25, then the entire sampling location was discarded.  
 
As an initial exploratory procedure to determine overall trends and local autocorrelation in the NO2 data, ArcGIS 8 
software (ESRI Corp, Redlands, CA) was used to implement the geostatistical interpolation method known as 
‘kriging’ (using the spherical model). After examining these general patterns in the data the LUR model was 
developed. 
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Figure 2: Toronto sampler locations against a backdrop of land use classification. 

 

Data for Independent Variables 
 
In total, 85 independent variables, or variations of different variables, were created with these data using ArcGIS 8 
(see Appendix 1 for the complete list of variables tested in the analysis). The variables were grouped into five broad 
categories: (1) land use (area of different land uses within buffers of various radii around each sampling location); 
(2) road and traffic (lengths of different road types and traffic flow counts within buffers of different radii); (3) 
population (population density, density of dwelling units, average dwelling values); (4) physical geography 
(geographic location in terms of X and Y coordinates, and elevation); and (5) meteorology (wind direction in relation 
to major emission sources). 
 
Toronto land use and road network data were acquired from a commercial source (i.e., DMTI Spatial Inc., Markham, 
ON, Canada). Average daily expressway or highway traffic counts were obtained from Environment Canada, and the 
City of Toronto Information Services provided similar data for major roads throughout the city. Population data were 
compiled from the Statistics Canada 1996 Census of Population (these were the most recent data available in GIS 
format). A digital elevation model developed by the Ontario Ministry of Natural Resources was compiled through 
ArcGIS 8.2 at a 5-metre resolution. Meteorological data were obtained from a network of 15 surface observation 
stations operated by various government agencies and private organizations in the Toronto region, including 
Meteorological Service of Canada, Ontario Ministry of Environment, and Ontario Power Corporation. The 
configuration of the network defined a modelling domain of some 8000 km2. This ensured an interpolated (and not 
an interpolated-extrapolated composite) wind field prediction by maintaining a variable-width (22-35 km) buffer of 
data points around City of Toronto’s footprint, thereby reducing the likelihood of erroneous prediction. 
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In total, 17-day (September 9-25) average zonal (E-W) and meridional (N-S) orthogonal components of wind – u and 
v, respectively – for the 17:01-18:00 segment of the day were calculated for each station. This hour not only 
represents the daily afternoon peak traffic flow for the 17 days period that the samplers were deployed, but it is also 
representative of the overall prevailing wind patterns. The orthogonal components were then used, following Goodin 
et al. (1980), as urban wind field datasets to assess the pollution-wind relationship. 
 
An interpolation method found to be well suited for modelling vector fields – the Radial Basis Functions (RBF) 
Multiquadric (MQ) method – was used for wind field construction. MQ interpolation has been used in meteorology 
and in related disciplines for more than 30 years (e.g., Shaw and Lynn, 1972; Lynn, 1975; Sirayanone, 1988; Nuss 
and Titley, 1994; Hubbe et al., 1997) The u and v components of wind were interpolated as separate scalar entities, 
which then allowed for wind direction vector calculations to be performed within the ArcGIS framework, with the 
ultimate goal being the determination of the upwind-downwind relationship between the high traffic expressways 
and the wind direction. To determine this relationship, the interaction between two vector sets is obtained by 
applying the dot product operation: 

θcos  2211 baba =+=⋅ baba  (eq.1) 
Where a and b are the direction vectors with components a1 and a2 and b1 and b2, representing the direction to the 
nearest expressway and wind direction, with θ the angle that lies between two of them. This second part of the 
equality in equation 1 is an identity that provides two pieces of information: (1) the angle that accounts for the degree 
of relationship between the wind vector and expressway, and (2) the sign of cos θ shows whether an expressway lies 
up or down wind of any specific point of interest in study area for that particular wind field. A negative value 
translates into a grid cell located downwind of an expressway. The opposite is true for positive values – grid cells are 
located upwind of an expressway. 
 
RESULTS 
 
The 94 NO2 samples used in the analysis had an arithmetic mean of 32.2 ppb, with values ranging from 17.4 to 61.1 
ppb (SD = 9.2). There were 19 samples that had a value greater than one standard deviation from the mean, i.e. 
greater than 41.4 ppb. Of these, 15 were located in proximity to expressways with the remaining 4 located within 
heavily trafficked corridors. Very good agreement was found between the paired Ogawa samples.  
 
Model Selection 
 
The NO2 measurements were transformed with the natural logarithm because of a strong right-skew. Each of the 85 
independent variables were tested through an individual bivariate regression model with SPSS 11.5. This identified 
variables that were highly correlated with the NO2 observations. Appendix 1 shows the R2 and t-score results from 
each bivariate analysis. Overall, the traffic and road length variables displayed the strongest association with NO2 
concentrations. Specifically, the density of roads within a 300-metre radius buffer of each sampler location 
(Rd_density) produced the best bivariate model, with a t-score of 7.03 and an R2 of 0.35.  
 
In the following step, the Rd_density variables were paired with other significant variables in a series of trivariate 
regression models. This series of analyses identified the pairing with population density (as calculated through a 
kernel estimate with population-weighted enumeration area (EA) centroids, and a 2000-m search radius (EA2000)), 
as the best two-variable combination for predicting NO2 exposures. The process of manual forward stepwise 
regression was performed until five independent variables were included in the model. Although useful for 
exploration, the results were hampered by high levels of collinearity between the variables.  
 
Other variable combinations were also tested with various “best subsets” regression analyses in Minitab 12.22. Best-
subsets regressions generate regression models with the “best” R2 values, mean square error predictions, and the 
Mallow Cp statistic, which is an indicator of how well the model fits the data without introducing bias (Hamilton, 
1992). Due to limitations on the number of variables allowed by the software in each selection, the best subsets were 
limited to the most significant variables discerned through the bivariate and manual stepwise screening. Wind 
direction variables were added to the parsimonious model selected from the above procedures because the wind 
models and data took considerable time to construct.  
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After determining the appropriate model, standard regression diagnostics were applied to assess problems such as 
outliers, heteroskedasticity, and spatial autocorrelation. A series of cross-validation tests were also completed to 
assess the predictive capacity and stability of the final set of models used in the analysis.  
 
Table 1 shows the model for predicting intra-urban variation in NO2. This model produced an R2 of 0.69. Each 
individual variable has a significant t-score and acceptable multicollinearity, as demonstrated by the Variance 
Inflation Factors (VIF). All of the coefficients have the expected signs. For the traffic variables, density measure of 
24-hour traffic counts (TRAF500) and road measures (RD2_50 and RD1_200) display positive associations. For the 
land use variables, industrial land use (IND750) within 750 m, and counts of dwellings within 2000 m (DC2000) of 
the monitoring location were positively associated with NO2 concentrations. Locations up to 1500 m downwind of 
major expressways (D_WIND15) had elevated NO2 concentrations. A trend was observed in the data with higher 
NO2 concentration values in the west to lower values in the east (X).  
 

Table 1: Summary of the regression results for the logarithmic NO2 Model. 
 

Number of obs = 94
Source SS       df M S      F(7,87) = 27.4
Regression 5.09 7 0.727 Prob > F = 0
Residual 2.29 86 0.027 R-square = 0.69
Total 7.38 93 Adj. R-square = 0.67

Root MSE = 0.163
Variable* Coefficient Std. Error  t Prob > t VIF
LN(NO2)
(Constant) 8.06E+00 1.177 6.85 0.00
RD1_200 1.84E-01 0.020 9.04 0.00 1.20
RD2_50 5.56E-01 0.300 1.85 0.07 1.11
IND750 1.63E-03 0.001 3.04 0.00 1.20
DC2000 8.28E-05 0.000 4.66 0.00 1.38
X -8.01E-06 0.000 -4.31 0.00 1.06
D_W IND1500 1.32E-01 0.040 3.30 0.00 1.20
TRAF500 1.11E-03 0.001 1.96 0.05 1.32  

*RD1_200 – measure of expressway within 200m; RD2_50 – measure of major roads within 50m; IND750 – measure 
of industrial land use within 750m; DC2000 – density of dwellings within 2000m (Kernel estimate); X – UTM NAD83 
x-coordinate; D_WIND15 – Boolean identifier whether downwind and within 1500m of nearest expressway at PM-peak 
traffic; TRAF500 – Density measure of 24 hour traffic counts within 500m.  

 
The scatter plot presented in Figure 3 demonstrates that this model produces reliable predictions with no significant 
outliers or heteroskedasticity. Examination of Cook’s distance and leverage statistics confirmed the absence of 
significant outliers. Additionally, Moran’s I tests suggest that spatial autocorrelation is insignificant in this model 
when using a first-order adjacency matrix. 
 
Cross Validation of Regression Results 
 
Several cross-validation analyses were also undertaken to confirm the predictive capacity and stability of the results. 
First, the regression model was run with a random selection of only 65 of the records. This action was repeated 
several times and produced comparable results to those achieved from the full data set in each instance. Each model 
with only 65 cases produced results that were remarkably similar to the model with all 94 cases.  
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Figure 3: Logarithmic-observed mean NO2 on predicted value. 

 

Second, the coefficients were used from the model using 65 cases to predict NO2 concentrations at the 29 excluded 
sampling locations. The model slightly over predicted for these locations, but the average difference was small in 
both absolute and relative terms. In each of the cross-validations, the average difference was not greater than 2 parts 
per billion, translating into an average relative difference of less than 4.0%. The results of this comparison are 
presented in Appendix 2.  
 
Third, an attempt to compare the modeled results with the data collected by government operated continuous 
monitoring stations for five co-located sites for the 17-day sampling period was made. Data for only 3 of the 5 co-
located sampling locations were available. Using government monitored levels as a reference datum for gauging 
measurement error by the passive Ogawa samplers, it was possible to conduct groups of impartial validations. First, a 
validation using longer term averages was also implemented. Five-year (1997-2001) average and the September, 
2001, average NO2 concentrations were available through Environment Canada’s National Air Pollution Surveillance 
Network (NAPS) reports. Second, a temporally matched validation (the two week period in September 2002) using 
Ontario Ministry of Environment (MOE) data was conducted. The modeled values were also compared to the Ogawa 
measurements made under this study in September 2002. These results indicated that the differences in monitoring 
technology and temporal variation produce relatively moderate errors when comparing measured values to modeled 
values (Table 2). As more temporally matched data are used, the relative error is similar between the land use 
regression model and the government data decreases (Table 3). Yet, in the ideal case, more government monitoring 
sites would be necessary to conduct a thorough statistical analysis of the error. 
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Table 2:  Comparison of the land use regression model (LUR) to National Air Pollution Surveillance network 
(NAPS) and respective Ogawa sampled values. 

 

Station 
Location 

LUR 
predicted 
NO2 ppb 
(Sept/02) 

NAPS 
Mean NO2 
ppb (1997-

2001) 

NAPS 
Mean 

NO2 ppb 
(Sept/01) 

Ogawa 
Mean 
NO2 

(Sept/02) 

%  
Difference 

LUR-NAPS 
(1997-2001) 

% 
Difference 

LUR-NAPS 
(Sept/01) 

% Difference 
LUR-Ogawa 

(Sept/02) 
60410 26.9 24.0 21.6 28.2 12.1 24.5 -4.6 
60413 25.3 24.3 21.8 20.1 4.1 16.1 25.9 
60403 36.9 28.9 26.4 38.0 27.7 39.8 -2.9 

 
Table 3: Comparison of the land use regression model and Ogawa sampled values to temporally matched 

government monitoring data. 
 

Station 
Location 

LUR predicted 
NO2 ppb (Sept/02) 

Ogawa Mean 
NO2 (Sept/02) 

MOE Mean NO2 
ppb (Sept/02) 

% Difference 
LUR-MOE 
(Sept/02) 

% Difference 
Ogawa-MOE 

(Sept/02) 
60410 26.9 28.2 23.4 13.0 17.0 
60413 25.3 20.1 19.9 21.3 1.0 
60403 36.8 38.0 28.5 22.6 25.0 

 
Mapping the Model 
 
Kriging analysis was initially used to explore the overall trends present in the sampling data. Figure 4 shows a 
kriging surface generated with a spherical model of NO2 across the city using the 95 data points. The downtown area 
of the city appears to have the highest levels of NO2. This was also the area of the one monitoring location that was 
located adjacent to an active construction site. Using this technique it was feasible to visualize possible outliers in the 
data. Further, the area to the east of the downtown core, along Lake Ontario, appears to have relatively low measures 
of NO2.  
 

 
Figure 4: Kriged surface generated with a spherical model of NO2 across the city using the 95 data points. 
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After deriving the parsimonious operational model, the coefficients were used to map a predicted pollution surface 
for exposure assignment in future health studies. Individual raster surfaces were created for each of the seven 
independent variables included in the model (listed in Table 1), which were then summed together with the Raster 
Calculator in ArcGIS 8 to generate the overall predicted surface.  
 
The land use regression model created a predictive pollution surface with the expected characteristics (see Figure 5). 
Specifically, areas in proximity to expressways and in the downtown core appeared to have higher levels of NO2, 
while areas with less development in the northeast of the city exhibit lower levels. Although the overall patterns 
remain similar, this map shows more detailed spatial variation than the kriging map. 
 

 
 

Figure 5: Operational land use regression predicted surface for Toronto. 
 
 
DISCUSSION AND CONCLUSION 
 
In this paper the determinants of ambient NO2 throughout the City of Toronto, Canada, have been modeled. The 
results suggest that a stable predictive surface can be derived for this North American city using the LUR method. 
The difference in predictability when compared to some European models possibly arises from the variations in land 
use between European and North American cities. Further cross validation in other North American locations will 
lend insight on why these differences exist. As mentioned earlier, postwar sprawl in the North American city has five 
important characteristics that may contribute to the difference between the European and North American results 
presented here: (1) deconcentrated development (i.e., lower population density than in earlier periods); (2) 
decentralized, meaning more new development occurs in suburban rather than central areas; (3) homogenous with 
very little mix in land use types; (4) large scale meaning extensive subdivisions, industrial parks, and commercial 
centers; and (5) segregated land use types that create a need for travel between residential and commercial (Fowler, 
1992; Ewing et al., 2002). Taken together, these characteristics increase the demand for travel by automobiles, and 
they probably create an exposure surface with more spatial variability than in European urban areas, which seem to 
have higher but less variable concentrations overall. Predicting a more complex exposure surface may have 
contributed to the lower R2 values observed in this study.  
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In addition, some of the European studies exposed the monitors for longer periods or for multiple seasons. The 
longer temporal run of monitoring data may have stabilized the monitor readings, contributing to the proportion of 
explained variance. This paper is reporting the first two-week sampling period in a larger study. After subsequent 
seasonal sampling is conducted, the data will be pooled together in line with European studies with the expectation 
that similar predictive capacity will be achieved, as a result of a sample more representative of the overall urban 
pollution variability. 
 
The sensitivity of the models to variable specification also requires attention in future research. Population density 
variables, for example, could produce a wide range of results, depending on the scale of the data inputs, the size of 
the buffer, and the method for operationalizing the variables. Again further empirical work in North America will be 
required to assess the adequacy of different variable specifications.  
 
This model has been the first LUR to incorporate influence of wind direction on predicted pollution concentration, 
but much more must be done to include impact of other meteorological variables such as wind speed, temperature, 
humidity, and atmospheric stability. The way forward for improving the land use regression techniques appears to be 
the development of some hybrid model that combines the positive features of this method, particularly the local-scale 
land use information, with more sophisticated emission transport models such as MM5 coupled with emission 
models such as Mobile 5.  
 
Good agreement was found between the 4 samples at each location (i.e., two double-sided Ogawa monitors). For 
future seasonal monitoring, only one Ogawa sampler will be used at each location, with 25% of locations containing 
duplicate Ogawa samplers. These duplicates will assure a means to assess data quality. Although the cross validation 
produced reasonable results for the same period of deployment with the same monitors, larger differences were 
found when comparing our predictions to temporally matched and five-year average concentrations from MOE and 
Environment Canada NAPS sites. The difference between the model predictions and the government monitors is 
difficult to assess with the limited number of available government stations to conduct cross-validations. Larger 
variations between Ogawa monitors and the government monitors may have occurred due to the small number of 
locations available from MOE and Environment Canada for comparison, the difference in monitoring technology, or 
the temporal variability in emission and meteorological variables. Regardless of the specific reason for this 
discontinuity in the results, this finding suggests longer monitoring periods covering all seasons may be necessary to 
capture the intra-urban variability in traffic pollution. 
 
In future research, additional meteorological and point sources emission variables will be incorporated into the 
model. Additional monitoring will be conducted during different seasons with co-located fine particle monitoring 
stations to assess the composition and predictability of these pollutants. In a separate study, these NO2 exposure 
models have linked to a large cohort of patients from respiratory clinics across Toronto to assess associations at the 
intra-urban scale to advance previous research using less sophisticated exposure metrics (see Finkelstein et al., 2003 
for related studies). Along with other collaborators, similar monitoring networks have also been implemented in 
other Canadian cities (i.e., Hamilton, Montreal and Vancouver). Pooled estimates from these cities may be used to 
derive exposure assessments for linkage with the National Population Health Survey. These estimates will in turn 
allow for assessment of between and within city variation in air pollution exposures and health effects for the 
Canadian population.  
 
In developing the national-level models, a trade-off inherent in LUR method will become more pronounced: the 
more the model is refined to specific conditions in one locale, the less transferable and operational it becomes. For 
example, inclusion of wind direction would require sophisticated meteorological models for each new area. The 
same could be said of including potential important microenvironmental variables such as street canyons. It would be 
virtually impossible to document each one of these canyons for extrapolating across many locations within a city, yet 
alone between them. One solution may arise in the form of remotely sensed data that could be used to assess 
characteristics such as street canyons, and this would allow for incorporation of these data into the computing 
environment.  
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The LUR maps showing predicted surfaces appear to capture small-area variation in NO2 concentrations more 
effectively than geostatistical alternatives such as kriging. These small-area variations are probably more important 
to the exposure experience of subjects in a given health study and, as a result, may detect health effects that would 
have gone unnoticed with government monitoring data or even kriging estimates. For this reason, the LUR appears 
worthy of further study in a North American context.  
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APPENDIX 1: 
 BIVARIATE REGRESSION ANALYSIS ON 83 VARIABLES 

 
 Variable Units Description R square t score 

1 Dist_Exp Km Distance to nearest RD1 .277 -5.966
2 Basket Binary Identifier of samplers located at major ‘basket weave’ intersections  .045 2.101
3 TruckVol500 Count Sum of 24hour truck counts on selected RD1s within 500m .247 4.955
4 HwyFlow1000 Count Sum of 24hour traffic counts on RD1s within 1000m  .242 5.446
5 RdFlow300_24 Count Sum of 24hour traffic counts on roads within 300m  .061 2.450
6 RdFlow500_24 Count Sum of 24hour traffic counts on roads within 500m  .157 4.169
7 AmFlow500 Count Sum of AM peak traffic counts on roads within 500m  .143 3.935
8 PmFlow500 Count Sum of PM peak traffic counts on roads within 500m  .137 3.846
9 AmDiv24 % Am peak counts divided by 24 hour totals (within 500m) .001 -.335
10 Rd_Density Ha Total area of RD1, RD2 and RD3 within 300m  .347 7.032
11 RD1_50 Km Length of road within 50m .233 5.315
12 RD2_50 Km  .063 2.494
13 RD3_50 Km  .073 -2.706
14 RD1_50200 Km Length of road between 50 & 200m (annulus buffer) .311 6.479
15 RD2_50200 Km  .045 2.086
16 RD3_50200 Km  .115 -3.482
17 RD1_200 Km Length of road within 200m .314 6.524
18 RD2_200 Km  .055 2.326
19 RD3_200 Km  .120 -3.569
20 RD1_300 Km Length of road within 300m .301 6.325
21 RD2_300 Km  .082 2.885
22 RD3_300 Km  .106 -3.315
23 RD1_300500 Km Length of road between 300 & 500m (annulus buffer) .154 4.110
24 RD2_300500 Km  .106 3.326
25 RD3_300500 Km  .047 -2.150
26 RD1_500 Km Length of road within 500m .245 5.489
27 RD2_500 Km  .128 3.702
28 RD3_500 Km  .074 -2.727
29 RD1_750 Km Length of road within 750m .245 5.487
30 ELEV m Elevation at sampling site .008 -.852
31 X UTM Geographic location (east/west) .114 -3.451
32 Y UTM Geographic location (north/south) .047 -2.146
33 EADens Count Enumeration Area population density (polygon thematic map)  .003 -.525
34 EA750 Count Enumeration Area population density kernel estimate, 750m  .014 1.135
35 EA1000 Count  .022 1.444
36 EA1250 Count  .030 1.707
37 EA1500 Count  .038 1.927
38 EA2000 Count  .045 2.095
39 EAs2000 Count Simple density estimate .043 2.053
40 EA2500 Count  .045 2.101
41 CTDens Count Census Tract population density (polygon thematic map) .001 .358
42 CT750 Count Census Tract population density kernel estimate, 750m  .016 -1.219
43 CT1000 Count  .012 -1.048
44 CT1250 Count  .006 -.773
45 CT1500 Count  .003 -.490
46 CT2000 Count  -.010 .160
47 CTs2000 Count Simple density estimate .011 1.014
48 CT2500 Count  -.007 .602
49 PC2500 Count Postal Code population density kernel estimate, 2500m  .006 .726
50 PC5000 Count  .028 1.638
51 DC1000 Count Enumeration Area density of dwellings kernel estimate, 1000m .013 1.104
52 DC2000 Count  .030 1.683
53 DC2500 Count  .030 1.706
54 DC5000 Count  .050 2.221
55 DwVal Count Enumeration Area average dwelling value (polygon thematic map) .003 -.491
56 Dw1000 Count Enumeration Area average dwelling value, kernel estimate, 1000m .013 1.098
57 Dw1500 Count  .024 1.523
58 Dw2000 Count  .030 1.682
59 Dw2500 Count  .030 1.697
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 Variable Units Description R square t score 
60 Open300 Ha Area of land use within 300m .043 2.033
61 Res300 Ha  .058 -2.395
62 Comm300 Ha  .018 -1.288
63 Indust300 Ha  .028 1.628
64 Gov/Inst300 Ha  .000 -.029
65 Open400 Ha Area of land use within 400m .029 1.672
66 Res400 Ha  .065 -2.546
67 Comm400 Ha  .012 -1.057
68 Indust400 Ha  .031 1.721
69 Gov/Inst400 Ha  .001 .260
70 Open500 Ha Area of land use within 500m .019 1.340
71 Res500 Ha  .069 -2.625
72 Comm500 Ha  .003 -.533
73 Indust500 Ha  .031 1.725
72 Comm500 Ha  .003 -.533
73 Indust500 Ha  .031 1.725
74 Gov/Inst500 Ha  .002 .447
75 Open750 Ha Area of land use within 750m .003 .486
76 Res750 Ha  .071 -2.663
77 Com750 Ha  .017 1.275
78 Indust750 Ha  .033 1.781
79 Gov/Inst750 Ha  .009 .927
80 D_WIND BOOL Down wind or not .030 1.689
81 D_WIND5 BOOL Down wind or not within 500m .193 4.709
82 D_WIND10 BOOL Down wind or not within 1000m .193 4.720
83 D_WIND15 BOOL Down wind or not within 1500m .193 4.720
84 TRAF300 Count/km2  Density estimate of 24 hour traffic count within 300m .053 2.287
85 TRAF500 Count/km2  Density estimate of 24 hour traffic count within 500m  .062 2.473 
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APPENDIX 2: 
CROSS-VALIDATION SHOWING ABSOLUTE AND RELATIVE DIFFERENCE BETWEEN 

OBSERVED AND MODELED VALUES FOR 30 RANDOMLY SELECTED CASES 
 

Cross Validation 1 Cross Validation 2 Cross Validation 3 

Final 
Model 

Cross 
Predicted 

1 Difference 
% 

Difference 
Final 

Model 

Cross 
Predicted 

2 Difference
% 

Difference
Final 
Model 

Cross 
Predicted 

3 Difference
% 

Difference

35.6 34.6 -1.0 -2.8 31.5 29.7 -1.8 -6.2 35.6 36.8 1.2 3.3 
41.1 42.1 1.0 2.5 25.3 25.0 -0.3 -1.4 41.1 42.1 1.1 2.5 
41.8 38.1 -3.7 -9.7 48.1 47.3 -0.8 -1.6 41.8 41.7 -0.1 -0.3 
30.1 31.0 0.9 2.7 29.3 29.8 0.5 1.5 30.1 31.4 1.3 4.1 
32.7 36.4 3.7 10.1 31.7 30.1 -1.5 -5.1 32.7 35.1 2.4 6.8 
39.9 45.6 5.6 12.3 22.7 23.1 0.4 1.8 39.9 41.7 1.7 4.1 
25.5 25.0 -0.6 -2.3 42.7 44.6 1.8 4.1 25.5 25.5 0.0 0.0 
29.5 29.5 0.1 0.2 19.9 20.2 0.3 1.6 29.5 29.4 -0.1 -0.4 
31.1 31.5 0.5 1.4 28.5 28.2 -0.3 -1.1 31.1 29.9 -1.2 -4.0 
45.0 59.0 14.0 23.7 39.6 39.1 -0.6 -1.4 45.0 53.8 8.8 16.3 
41.4 48.3 6.9 14.3 21.4 22.1 0.7 3.3 41.4 45.0 3.6 8.0 
25.9 25.6 -0.3 -1.1 34.1 34.0 -0.1 -0.2 25.9 25.4 -0.5 -1.8 
27.2 27.9 0.6 2.3 28.3 29.0 0.6 2.2 27.2 27.1 -0.1 -0.4 
45.5 52.3 6.8 13.0 24.5 24.7 0.1 0.5 45.5 50.4 4.9 9.7 
46.9 52.9 6.0 11.4 30.6 31.1 0.5 1.5 46.9 51.5 4.6 9.0 
25.9 26.9 1.0 3.7 27.8 27.8 -0.1 -0.2 27.8 28.0 0.2 0.6 
26.2 25.6 -0.7 -2.6 32.3 30.7 -1.6 -5.2 32.3 32.4 0.1 0.2 
52.0 53.6 1.6 3.0 24.2 23.9 -0.4 -1.6 24.2 24.2 0.0 -0.1 
47.7 49.6 2.0 4.0 25.0 24.7 -0.2 -0.9 25.0 25.3 0.3 1.4 
26.2 25.6 -0.6 -2.3 34.8 33.7 -1.1 -3.3 34.8 36.2 1.3 3.6 
42.8 43.8 1.0 2.3 29.4 29.8 0.4 1.4 29.4 29.6 0.2 0.6 
33.3 33.6 0.3 0.8 44.3 46.3 2.1 4.4 44.3 46.5 2.2 4.7 
39.9 39.7 -0.2 -0.5 21.3 22.0 0.7 3.4 21.3 21.5 0.2 1.2 
24.1 23.9 -0.2 -0.8 39.0 38.1 -0.9 -2.2 39.0 41.7 2.7 6.4 
25.4 27.9 2.5 8.8 24.0 24.3 0.3 1.4 24.0 25.6 1.6 6.4 
31.9 32.0 0.1 0.3 40.4 41.7 1.3 3.0 40.4 42.9 2.5 5.8 
35.6 35.5 -0.1 -0.4 22.6 22.9 0.3 1.3 22.6 22.7 0.1 0.4 
26.9 29.4 2.5 8.5 27.5 27.4 -0.1 -0.2 27.5 27.5 0.1 0.3 
31.3 36.0 4.7 13.0 32.1 32.6 0.5 1.4 32.1 32.7 0.6 1.9 
 Average = 1.9 4.0  Average = 0.0 0.1  Average= 1.4 3.1 

 
 


