

NERAM V: Strategic Policy Directions for Air Quality Risk Management

October 16-18, 2006 Morris J. Wosk Centre for Dialogue Simon Fraser University Vancouver, B.C.

COLLOQUIUM STATEMENT

PREFACE

This Statement is the result of discussions held at the 2006 NERAM V *Colloquium "Strategic Policy Directions for Air Quality Risk Management*", the final meeting in the 5-year international Colloquium series convened by the University of Waterloo (Institute for Risk Research) and University of Ottawa (McLaughlin Centre for Population Health Risk Assessment), two nodes of the Network for Environmental Risk Assessment and Management (NERAM). The Colloquium was held in Vancouver, Canada at the Wosk Centre for Dialogue on October 16-18, 2006.

The Statement represents the collective thinking of more than 70 delegates including policymakers, regulators, public health groups, university researchers and other stakeholders from Canada, the UK, the US, Netherlands, Germany, Australia, New Zealand, Finland, and China (see Appendix for list of delegates). The Statement reflects the majority opinions expressed during two breakout sessions and the views of speakers and delegates expressed in plenary sessions. Delegates were asked to consider the following questions in their discussions:

- What do scientists know now that can translate into policy or program delivery solutions for air quality managers (i.e. interim outcomes/nuggets of wisdom for action now)?
- From the perspective of the practicing air quality manager, what are the most pressing research priorities to guide short term and long term air quality management strategies?
- Should we be moving towards international harmonization of air quality standards, emissions inventories, measurement? Should we think beyond air quality standards?
- How do we link air quality and climate change strategies? Where are the co-benefits and what are the disbenefits?
- Should there be further ongoing efforts to link the air quality management science, stakeholder and policy communities after NERAM? Is there a need for an independent forum to tease out nuggets of wisdom from science for those who are seeking air quality management solutions?

Draft versions of the Statement were vetted by the planning committee and delegates following the conference to produce this final version. All comments were editorial in nature and are not listed here.

Current State of Science

1. A diverse and growing range of scientific evidence demonstrates significant effects of air pollution on human health and the environment, thereby justifying continued local and global efforts to reduce exposures.

Communication of Science of Policy Decisions

- 2. Communication of the evidence on the health effects of air pollution and the benefits of control is critical to enhancing public awareness and demand for policy solutions. Novel approaches are needed for interpretation of scientific evidence to guide air quality managers in formulating local programs and policies.
- **3.** A clearer articulation of the physical and policy linkages between air quality and climate change is needed to inform public opinion and influence policymakers. Care must be taken not to compromise air quality through actions to mitigate climate change. Similarly, air quality solutions must be reviewed in terms of impacts on climate.

Policy Approaches for Air Quality Management

- 4. Improving air quality is best approached at a systems level with multiple points of intervention. Policy solutions at the local, regional and international scale through cross-sectoral policies in energy, environment, climate, transport, agriculture and health will be more effective than individual single-sector policies.
- 5. Ambient air quality standards based on exposureresponse relationships continue to serve as a basis for air quality management for non-threshold pollutants such as PM. Interim targets set by WHO-Europe in 2006 provide achievable transitional air quality management milestones for parts of the world where pollution is high as progress is made towards reaching long-term air quality goals.
- 6. Air quality management driven solely by air quality standards may not be optimal for non-threshold pollutants in areas where standards have already been attained or for "hot spots" where measures to achieve further air pollution reductions can be increasingly difficult and costly. Exposure reduction and continuous improvement policies are important extensions to ambient air quality standards.
- 7. Given economic growth projections, hemispheric transport of pollutants from Asian countries will

continue to be a significant contributor to poor air quality globally. International scientific and technical collaboration to assess air quality and assist in controlling emissions, while enabling economic growth is critical.

- 8. The health effects literature suggests that reducing exposure to combustion-generated particles should be a priority. This includes emission reduction measures related to fossil fuels and biomass. The evidence is sufficient to justify policies to reduce traffic exposures, especially if such policies serve to address other societal problems such as 'grid lock', increasing commute times and distances, and obesity.
- **9.** Prioritization of pollutants and sources for emission reduction based on the potential for exposure may be a useful alternative to rankings based on emission mass. The intake fraction concept assigns more weight to emissions that have a greater potential to be inhaled and therefore to impact health.
- **10.** Air quality management strategies focused on improving visibility may gain greater support from the public and policymakers than those oriented strictly towards the improvement of public health.
- **11.** International harmonization of air pollutant measurements and metrics, emission inventories, modeling tools, assessment of health effects literature and health-related guidelines are needed for efficient policy implementation.

Science and Policy Assessment Needs

- **12.** A major scientific challenge is to advance understanding of the toxicity-determining characteristics of particulate matter (composition, size and morphology, including surface chemistry) as well as the role of gaseous co-pollutants to guide the development of source-specific air quality management strategies.
- **13.** The effectiveness of local, regional and global policy measures must be scientifically evaluated to confirm that the expected benefits of interventions on air quality, human health and the environment are achieved and if not, that alternate measures are implemented quickly.

Elaboration of Summary Statements

Current State of Science – Do We Know Enough to Act?

Scientific evidence of the effects of air pollutant exposure on human health and on the environment is strong enough to justify global efforts to continue to reduce outdoor concentrations, even in locations that meet air pollutant standards. Ambient particulate matter, which has received the most attention in recent years, is linked to a number of different health outcomes, ranging from acute changes in the respiratory tract, including inflammation and impaired pulmonary function, through to increased risk of symptoms requiring emergency room or hospital treatment, and to increased risk of death from cardiovascular disease and lung cancer. This evidence stems from studies of both acute and chronic exposure. Toxicological and human clinical studies support the epidemiological findings.

Communication of Science for Policy Decisions

The current state of knowledge on the health and ecological effects of air pollution is not broadly communicated nor understood. Clear messaging from health effects scientists to the public and policymakers that conveys the full breadth of the evidence and true extent of scientific consensus is needed. Scientific information should be readily available, particularly for politicians and local planners who are motivated to implement evidence-based solutions and/or make decisions that will benefit public health over the short and long term. For example, a comprehensive plain language fact sheet summarizing what is known, as a basis for policy interventions, as well as examples of practical solutions, would be useful. Comparative risk assessments, such as the WHO Global Burden of Disease project¹ findings, may provide a useful format for conveying the public health significance of air pollution exposures in context with other environmental health risks.

Given the extensive literature on various aspects of air quality management, it is important to have a diverse range of processes to assess and communicate the policy significance of scientific knowledge to local, regional, national, and international policymakers. Reputable experts who specialize in articulating the science-policy interface are important to identify and their role needs to be recognized and supported. Organizations and groups such as World Health Organization (WHO), Clean Air for Europe (CAFE), NARSTO, and the UK Air Quality Expert Group serve this function well at the international and national level. Exposure reduction actions can be most effective when designed at the local level and thus, there is a need for expertise to translate the scientific information for development of practical, cost-effective local level air quality management policies. Ideally, local level "science-policy" integration working groups would be established including representation from the private sector and other local stakeholders. For example, the British Columbia Ministry of Environment has informally convened local university air quality researchers, BC Lung Association and others to provide guidance on the implications of science for local level policies and programs.

¹Ezzati et al. 2006. Chapter 4. Comparative Quantification of Mortality and Burden of Disease Attributable to Selected Risk Factors. In Lopez et al. Global Burden of Disease and Risk Factors. The World Bank and Oxford University Press. New York, NY. <u>http://files.dcp2.org/pdf/GBD/GBD04.pdf</u>.

Policy Approaches for Air Quality Management

Health-based Air Quality Standards and Guidelines

Ambient air quality standards based on exposure-response relationships continue to serve as the primary foundation for air quality management for non-threshold pollutants such as particulate matter. In low and middle income countries where air pollution levels are the highest, interim targets, as suggested by WHO-Europe, aim to limit the absolute maximum level of individual risk and provide a benchmark for progress in reducing population exposures. The 2006 global update of the World Health Organization guidelines for air quality² has recommended guidelines for PM expressed as a concentration and averaging time, together with a series of three successively more stringent 'Interim Targets'. This approach is deemed by the WHO as particularly helpful for developing countries whose levels of PM greatly exceed the ultimate air quality guidelines.

Exposure Reduction Targets

Air quality management driven only towards the achievement of air quality standards may not be optimal in areas where standards have already been attained or in "hot spots" such as high traffic areas, where measures to achieve further air pollution reductions can be increasingly difficult and costly.³ To make further public health gains in these areas exposure reduction and/or continuous improvement policies are an important addition to health-based ambient air quality standards. The European Commission has proposed a new exposure reduction target (ERT) concept for fine particulate matter PM_{2.5}, recognizing the benefits of continued reductions in pollutant levels even in relatively "clean" areas.⁴ The exposure reduction concept promotes a reduction in exposures of a larger part of the population, whereas the limit value approach may only affect a smaller number of people as compliance is attained. Therefore greater overall improvements in public health could be expected at a lower cost through ERT, however new approaches to monitoring or tracking progress may be needed to ensure exposures decrease.

Hemispheric Transport

Given economic growth projections, emissions from sources in Asia need to be considered both in terms of their implications for North America, but more so for air quality in Asia. Continued international collaborative efforts to assess emissions sources and translate worldwide research findings into practical solutions are required to improve air quality in Asia and other countries.

² WHO, 2006. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global Update 2005. Summary of Risk Assessment. http://www.euro.who.int/air/activities/20050222_2

³ Maynard, R. 2003. Scientific information needs for regulatory decision making. J Toxicol Environ Health. Part A. 66:1499-1501.

⁴ See further discussion in Chapter 5 of the Guidance Document.

Risk-Based Exposure Reduction

While there are still uncertainties in the science to guide source-specific air quality management strategies, the health effects literature suggests that strategies to reduce exposure to combustion-generated particles should be a priority. This includes carbonaceous sources such as emissions from coal-fired power plants, as well as wood burning sources.

There is growing evidence to indicate that exposures related to proximity to traffic are responsible for a broad range of health effects ranging from allergic sensitization, asthma, cancer, and cardiovascular events. While technological measures to reduce the overall emissions from transportation will continue to be necessary given projected increases in vehicles and vehicle miles traveled, broad-based measures to reduce the population's overall time spent near or in traffic can be expected to have multiple public health and quality of life benefits. Thus, such measures need to be included in all urban planning exercises.

In assessing which of the myriad of air pollutant sources needs to be more closely considered for emission reductions, the 'intake fraction' approach is a useful alternative to rankings based on mass emissions. This approach assigns more weight to emissions that have a greater potential to be inhaled and thereby provide a more health-effect oriented ranking of the sources under consideration for control. Intake fraction reflects relative exposures due to plume rise, dilution, meteorology and population density. Car and truck emissions, for example, rank very low based on $PM_{2.5}$ mass emissions compared to road dust and waste burning sources, but rank high in an exposure-based ranking.⁵

Systems-level Risk Management

Poor air quality is best approached as a systems-level problem requiring multiple points of intervention. Policymakers must recognize that solutions directed simultaneously at the local, regional and international scale through cross-sectoral policies in energy, environment, climate, transport, agriculture and health will be more effective than individual single-sector policies. The assessment of impacts and development of solutions to improve not only human health, but also ecological sustainability are consistent with a systems level approach. For example, anthropogenic sources of air pollution as well as non-anthropogenic sources such as methane stores in Arctic permafrost need to be considered.

Win-win strategies addressing multiple air issues (air quality, climate change, noise, visibility) can be identified based on existing knowledge. For example, reducing traffic exposures through dedicated bike paths, land use and transportation planning, and cleaner fuels policies can offer multiple benefits, including improved air quality, reduced greenhouse gas emissions, reduced noise, improved visibility, and reduced obesity.

Sustainable energy system solutions such as district based co-generation providing combined thermal and electricity are an example of a cost-effective systems-level strategy with benefits for sustainable energy, air quality, climate change and health. The State of California provides

⁵ Croes, B. 2006. Policy Case Studies from North America. Presentation at NERAM V October 17, 2006. http://www.irr-neram.ca/about/Colloquium.html

leadership in integrated air quality, climate change and energy policy solutions through measures to reduce greenhouse gas emissions from cars and light trucks and stationary sources, requirements for purchases of clean electricity, renewable energy source targets (20% from renewable energy sources by 2010), incentives for energy efficiency and conservation programs.

Tools that are accessible to local air quality managers to assist in making integrated policy decisions focusing on achieving ecological sustainability and expected health impacts at an overall level of population health are needed.

A paradigm shift is needed to focus more broadly on achieving sustainability objectives by driving choices and behaviours of the public. Social marketing efforts are important in mobilizing public demand for solutions and political will to take action.

A clearer articulation of the linkage between air quality and climate is needed to mobilize the public and influence policymakers. Care must be taken not to compromise air quality through actions to mitigate climate change. Similarly, air quality solutions must be reviewed in terms of impacts on climate change.

Visibility as a Policy Driver

Air pollution typically causes a white, yellow, or brown haze that reduces visual range and affects the public's ability to enjoy their surroundings. The concept of visibility (or impaired visibility due to haze or smog) as an approach to communicate to governments, legislators, the media and the public the linkage between air pollution concentrations, environmental degradation, and health costs has been used in Hong Kong and elsewhere. Four levels of air quality (poor, better, good, average) are defined based on general and roadside concentrations of PM_{10} , NO₂ and SO₂ and levels of visibility. The public often uses the clearness of the outdoors as a general measure of air quality. Therefore, air quality management strategies developed and communicated with the goal of improving visibility may find greater support from the public and policymakers than those oriented strictly towards improvement of public health as the main policy driver.

Directions for Harmonization

Reduction of exposures to air pollution and continuous improvement in air quality are required at a global level. International harmonization of air pollutant measurements and metrics, emission inventories, assessment of health effects literature and health-related guidelines are recommended. Policy decisions related to setting air quality standards and management strategies however need to be made at the local level considering characteristics of the local and regional airsheds, sources, and social and economic considerations.

Science and Policy Assessment Needs

A major scientific challenge is to characterize the health effects of complex mixtures in the atmosphere. Studies are needed to understand the toxic characteristics of particulate matter (chemistry, compositions and size), as well as the role of gaseous co-pollutant, to guide the

development of source-specific air quality management strategies. The effects of various reduction technologies on the chemical and size relationships of PM needs to be better understood so that potential dis-benefits are avoided.

The effectiveness of local, regional and global air policies needs to be formally evaluated to understand the actual and measurable impacts/benefits of interventions at various scales on air quality, human health and the environment. Thus, monitoring and surveillance programs of emissions and ambient air quality must be preserved, planned and dedicated to continuous policy performance review. Effective local air quality management initiatives may be a guide to what may be done more regionally and globally. Evaluation should be ongoing and iterative so that policy measures can be refined based on measurable performance criteria. Ideally, this should include attempts to track improvement in health and/or the environment to ensure the ultimate objectives are being achieved to greatest extent possible given the public investments in control measures.

Measures of public health burden need to broadened beyond mortality alone to include indicators of illness and impacts on quality of life and subsequently, approaches to include and appropriately weight such quantitative information in the evaluation of policy options need to be developed.

Additional contaminants (POPs, metals) and ecosystem impacts should also be assessed and approaches to include and appropriately weight such quantitative information in the evaluation of policy options need to be developed.

APPENDIX – LIST OF DELEGATES

Name	Organization
Ryan Allen	Simon Fraser University, Burnaby BC
Jane Barton	Environment Canada, Gatineau QC
Alex Basiji	Health Canada, Toronto ON
Paul Baynham	Northland Regional Council, Whangarei, New Zealand
Richard Bennett	Ministry of Environment, Victoria BC
Carmelita Biagtan	BC Lung Association, Vancouver BC
Maryse Bouchard	Institut national de santé publique du Québec, Montréal QC
Michael Brauer	University of British Columbia, Vancouver BC
David Briggs	Imperial College London, London, U.K.
Jeffrey Brook	Environment Canada, Toronto ON
Christina Cheng	Ontario Ministry of the Environment, Etobicoke ON
Quentin Chiotti	Pollution Probe, Toronto ON
Anthony Clarke-Sturman	Shell International Oil Products, London, U.K.
Aaron Cohen	Health Effects Institute, Boston MA
Ray Copes	BC Centre for Disease Control, Vancouver BC
Lorraine Craig	University of Waterloo, Waterloo ON
Bart Croes	California Air Resources Board, Sacramento CA
Hadi Dowlatabadi	University of British Columbia, Vancouver BC
Louis Drouin	Montreal Public Health, Montreal QC
Ali Ergudenler	Greater Vancouver Regional District, Burnaby BC
Long Fu	Alberta Environment, Edmonton AB
Maria Furberg	RWDI AIR Inc., Vancouver BC
Larry Gephart	ExxonMobile Biomedical Sciences, Annandale, NJ
Scott Giffin	Public Health Services New Brunswick, Saint John NB
Bruce Gillies	Environment Canada, Toronto ON
Stephanie Gower	University of Waterloo, Waterloo ON
Andrew Green	Environment Canada, Vancouver BC
Kong Ha	Government of the Hong Kong SAR, Hong Kong, China
Jamal Harb	Health Canada, Burnaby BC
Anthony Hedley	University of Hong Kong, Hong Kong, China
Steven Hilts	Teck Cominco Metals Ltd., Trail BC
Philip Hopke	Clarkson University, Postdam NY
Tracey Inkpen	Environment Canada, Dartmouth NS
Rand Jackson	Natural Resources Canada, Ottawa ON
Matti Jantunen	National Public Health Institute of Finland, Kuopio, Finland
Derek Jennejohn	Greater Vancouver Regional District, Burnaby BC
Sam Kacew	University of Ottawa, Ottawa ON
Bruce Kay	Environment Canada, Vancouver BC
Roger Keefe	Imperial Oil Ltd., Calgary AB
Hugh Kellas	Greater Vancouver Regional District, Burnaby BC
Norman King	Montreal Public Health, Montreal QC

Graham Kissack	Catalyst Paper, Vancouver BC
Tom Kosatsky	Montreal Public Health, Montreal QC
Dan Krewski	University of Ottawa, Ottawa ON
Alan Krupnick	Resources for the Future, Washington DC
Michal Krzyzanowski	World Health Organization, Bonn, Germany
Brian McLean	USEPA, Washington DC
Addy Mitchell	University of Waterloo, Waterloo ON
Curtis Moore	Health & Clean Air Newsletter, McLean VA
Jack Nickel	Health Canada, Burnaby BC
Marie O'Neill	University of Michigan, Ann Arbor MI
Glen Okrainetz	Ministry of Environment, Victoria BC
William Pennell	NARSTO Management, Pasco WA
Karla Poplawski	University of Victoria, Victoria BC
Franck Portalupi	Environment Canada, Gatineau QC
Kathy Preston	RWDI AIR Inc., Vancouver BC
Gloria Rachamin	Ontario Ministry of Health, Toronto ON
Michael Rensing	Ministry of Environment, Victoria BC
Nigel Routh	Department of Environment & Conservation (NSW), Sydney, Australia
Jonathan Samet	Johns Hopkins Bloomberg School of Public Health, Baltimore MD
Markus Schulze	ThyssenKrupp Steel, Duisburg, Germany
Eleanor Setton	University of Victoria, Victoria BC
John Shortreed	University of Waterloo, Waterloo ON
Adolfo Silva	Canadian Petroleum Products Institute, Toronto ON
Dean Stinson O'Gorman	Environment Canada, Gatineau QC
Brian Stocks	Ontario Lung Association, Windsor ON
Natalie Suzuki	Ministry of Environment, Victoria BC
Rob Taalman	Shell International, The Hague, Netherlands
Suzanne Therien	University of Ottawa, Ottawa ON
Annemoon van Erp	Health Effects Institute, Boston MA
Anton Van Heusden	Environment Canada, Gatineau QC
Cindy Walsh	BC Ministry of Environment, Surrey BC
Corinna Watt	Environment Canada, Edmonton AB
Martin Williams	DEFRA, London U.K.