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KEY MESSAGES 

 
• Three essential tools for managing the risk due to air pollution are multi-pollutant emission 

inventories, ambient measurements and air quality models.  Tremendous advances have and 
continue to be made in each of these areas as well as in the analysis, interpretation and integration 
of the information they provide.   

• Accurate emission inventories provide essential information to understand the effects of air 
pollutants on human and ecosystem health, to identify which sources need to be controlled in 
order to protect health and the environment, and to determine whether or not actions taken to 
reduce emissions have been effective. 

• Air quality measurements are essential for public health protection and are the basis for 
determining the current level of population health risk and for prioritizing the need for reductions. 
They are also critical for evaluating the effectiveness of AQ management strategies and altering 
such strategies if the desired outcomes are not being achieved.   

• Air quality models quantify the links between emissions of primary pollutants or precursors of 
secondary pollutants and ambient pollutant concentrations and other physiologically, 
environmentally, and optically important properties.  They are the only tool available for detailed 
predictions of future air concentration and deposition patterns based on possible future emission 
levels and climate conditions.   

• Air quality problems tend to become more difficult to address as the more obvious and less costly 
emission control strategies are implemented.  This increases the demand for advanced scientific 
and technological tools that provide a more accurate understanding of the linkages between 
emission sources and ambient air quality.   

• Despite scientific advancements, including improved understanding of the impacts of poor air 
quality, the pressure to identify cost-effective policies that provide the maximum benefit to public 
health push our current tools and knowledge to their limits and beyond.   

• Due to scientific uncertainties, highly specific control options that target specific chemical 
compounds found on fine particles, specific sources or source sectors or that lead to subtle 
changes in the overall mix of chemicals in the air (gases and particles) remain extremely difficult 
to evaluate in terms of which options most benefit public health. Lack of a complete 
understanding of exposure and health impacts of the individual components in the mix and their 
additive or synergistic effects pose further challenges for health benefits evaluation.  However, 
progress is being made and new ways of thinking about air quality and pollution sources, such as 
the concept of intake fraction, help to provide some perspective.   

• A broader perspective, including consideration of environmental effects and the implications of 
climate change on air quality and on co-management of air pollutants and greenhouse gases, will 
be increasingly important to embrace. 

 



 2 

3.1 Introduction  
Emission inventories, air quality 

measurements and air quality modeling are 
scientific cornerstones supporting air quality risk 
management. Developing and applying these 
tools, along with source apportionment, which 
are depicted in Figure 3.1, are the key steps 
involved in understanding how chemistry, 
meteorology and natural and human emissions 
interact to produce observed levels of outdoor 
air pollution. In addition, a wide range of air 
quality (AQ) measurements and exposure 

analyses are essential for epidemiological 
research aimed at uncovering the current risks 
posed by air pollution and for subsequent risk 
assessment exercises. The purpose of this 
chapter is to provide an overview of the roles 
that emissions, measurements and models can 
play in air quality risk management and in 
understanding air quality issues. This 
information and the references therein are also 
intended to provide some insight into current 
capabilities and best practices associated with 
developing and applying these essential tools. 
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Figure 3.1 Emission inventories, ambient measurements and air quality models are the tools needed to 

understand the current air pollutant levels and predict future levels under various policy 
options.  

 
Several valuable reports on air pollutant 

emissions, ambient measurements and air 
quality modeling have been published in the 
past. In particular, the NARSTO particulate 
matter assessment for policy makers (NARSTO, 
2003) describes measurement methods, North 
American emissions and observations, receptor-
based methods of data analysis and 
interpretation and the status of air quality models 
for particulate matter. The World Health 
Organization report on “Monitoring Ambient 
Air Quality for Health Impact Assessment” 
(WHO, 1999) outlines the principles underlying 
air quality monitoring networks and other 
related activities (e.g., modeling) that help insure 
they are of most use for supporting health 
impact assessment. 

 
Figure 3.2 shows the basic steps of AQ risk 

management and specifies how scientific inputs 
from emissions, measurement and modeling 
play a direct role in the policy process. They 
enable the prediction of air quality 
improvements associated with emission 
reduction options, as well as the analysis of the 
costs and benefits of air quality management 
options. Although the figure depicts the process 
in a linear, sequential fashion, with science and 
policy proceeding separately, in practice the 
order of steps may be reversed or steps may 
occur in parallel. In addition, science plays a key 
role in identifying appropriate air quality goals 
and options for emission reductions. For 
example, in developing a conceptual model of 
the sources and atmospheric processes that lead 
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to current ambient pollutant concentrations, 
there may be a need to gather additional 
measurements to test and refine the model 
before one can thoroughly evaluate whether or 
not the tools are reliable. In addition, depending 
upon the maturity of air quality risk management 
in a particular location, not all steps may be 
required. Existing measurement programs may 
be fully adequate or the AQ models may have 
already been widely accepted for the intended 
use.  

A crucial step in air quality management is to 
quantitatively link ambient pollutant 
concentrations at specific locations or within 
specific geographic regions to specific emissions 
(emissions to concentration relationship). This 
linkage is studied through both receptor and 
source-based AQ models. Source-based models 
are capable of predicting future ambient air 
quality concentrations and are applied to 
evaluate emission reduction scenarios in the 
context of Figure 3.2. Model estimates of 
concentration changes can then be integrated 
with concentration-response functions (CRFs) to 
estimate health benefits.  

Table 3.1.1 summarizes the various ways in 
which emissions, measurements and models are 
applied directly in AQ risk management. Ideally, 
AQ management should strive to address 
problems from a multi-pollutant, risk-based 
perspective that emphasizes results over process, 
takes an airshed approach to controlling 
emissions, creates accountability for these 
results, and modifies air quality management 
actions as data on the effectiveness of these 
actions are obtained (NRC, 2004). Although 
improvements are needed, current emission 
inventories, measurement activities and 
modeling tools are consistent with this objective. 
To the extent that resources permit, they 
continually evolve attempting to incorporate the 
most up to date scientific thinking and 
technologies, which dictates that to understand 
and effectively address AQ problems a one 
atmosphere approach is necessary. 
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Figure 3.2. The role of emissions, measurement and modeling in local/regional air quality risk 

management. 
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Table 3.1.1: The application of emissions data, air quality measurements and air quality modeling in air 
quality risk management.  

 
Tool Area of Application in Air Quality Risk Management 
Emissions 

 
• Current emission rates for criteria gases and particles by source type and location 

serve as the starting point for assessing the need for and feasibility of reductions 
• Projected emission rates for criteria gases and particles by source type and location 

and detailed information on the causes of the future changes in emissions 
• Identification of broad based and detailed emission reduction strategies and 

technologies by source type and their effectiveness for the emissions of criteria gases 
and particles 

 
Measurements 

 
• Characterization of past and current pollutant levels and identification of exceedances 

of AQ standards, objectives, or targets 
• Time series of ambient concentrations at population-based monitoring sites for trend 

analysis in relation of emission reductions 
• Determining the relationship between ambient concentrations at population-based 

monitoring sites and a range of health endpoints (concentration-response function) 
• The relationship between ambient concentrations of primary and secondary pollutants 

and emission source categories (source apportionment or receptor models) 
• Development and evaluation of conceptual models and source-oriented models 
 

Models 
  

• Simulation of emission scenarios and quantification of resulting benefits and 
disbenefits by prediction of ambient concentrations at multiple time and space scales 
for: 

o Base case (e.g., current emissions)  
o Emission levels when policies currently “on-the-books” are fully implemented 
o New emission reduction scenarios 

• Estimation of emission changes required to attain AQ objectives or standards 
• Evaluation of emission estimates 
• Quantification of source-receptor relationships 
• Characterization of governing chemical regimes and limiting reactants for current and 

future conditions 
• Simulation and design of new or modified measurement systems (network 

optimization, site selection, input to data assimilation and analysis routines) 
 
Emissions, measurements and models also 

play an indirect role in AQ management through 
the provision of information to the general 
public or specific stakeholder groups. This 
includes media reports conveying current 
pollutant levels or the air quality index (AQI), 
maps published on line (e.g., http://airnow.gov/) 
and AQ forecasts and/or smog advisories. An 
example of publicly available emissions 
information is the North American Commission 
for Environmental Cooperation (CEC) series of 
reports ranking major sources and assessing 
progress (www.cec.org/takingstock/index.cfm).  

 
Right-to-know websites such as the Toxic 
Release Inventory in the U.S. 
(www.epa.gov/tri/) and the Canadian National 
Pollutant Release Inventory 
(www.ec.gc.ca/pdb/npri/npri_home_e.cfm) 
provide specific emissions information for local 
areas. Public access to emissions information is 
increasing worldwide (e.g., Mexico: 
http://app1.semarnat.gob.mx/retc/index.php and 
www.epa.gov/ttn/chief/net/mexico.html) and 
international standards for a Pollutant Release 
and Transfer Register (PRTR) have been 
established (www.epa.gov/tri/programs/prtrs.htm). 
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This information can be valuable for 
highlighting areas of large emissions and 
situations where there has been a lack of 
progress, as well as for assisting members of the 
general public in learning about emissions in 
their region. However, it should be viewed as a 
starting point for more detailed examination 
because the information may be outdated, 
incomplete and/or misinterpreted by the media 
or special interest groups.  

This chapter elaborates on the functions of 
emissions, measurements and modeling in AQ 
risk management. Section 3.2 provides the 
basics of contemporary emissions inventory 
development, evaluation, and dissemination. 
Section 3.3 describes the various areas of 
application of measurement data in air quality 
risk management and provides guidance on 
technical issues to be considered in establishing 
a robust measurement program. Section 3.4 
describes the application of models for air 
quality risk management, identifies key 
technical issues to consider in using air quality 
modeling systems and reviews eight steps for 
best practice in using models in air quality 
management. Section 3.5 describes current 
efforts and future directions to combine the 
capabilities of emissions and measurement 
information and air quality modeling to better 
support air quality management. Section 3.6 
provides the chapter summary and 
recommendations.  
 
3.2 Emissions Information for Air 

Quality Risk Management 
3.2.1  Introduction 

Without accurate information on the sources 
of air pollutants – what they are, where they are 
located, what they are emitting, and how much – 
it is impossible to identify which sources are 
most important to control, to predict the air-
quality consequences of these emissions, or to 
monitor the effectiveness of emission reduction 
programs. Emissions information is provided, 
assessed and compiled at many different levels. 
These can include specific industries 
continuously measuring and reporting their 
emissions, national and local governments 
compiling information and running models to 
extrapolate the available information across 

sources, time and space, as well as air quality 
modelers, who process the information for 
specific applications. To obtain accurate 
information it is necessary for both government 
and industry to bear some responsibility, acting 
in partnership to ensure accuracy, proper 
interpretation and continual improvement. 
Arguably, the emissions information in the U.S. 
and perhaps North America (N.A.) represents 
the current state-of-the-art. Thus, this section of 
Chapter 3 discusses how emissions are 
determined in N.A. and the current strengths and 
weaknesses of the available information. Much 
of the material discusses is from a more 
extensive report: Improving Emission 
Inventories for Effective Air Quality 
Management Across North America: A NARSTO 
Assessment (NARSTO, 2005). This perspective 
should be relevant to all agencies/stakeholders, 
regardless of country, seeking to obtain and 
improve emissions inventories for AQ 
management purposes.  
 

3.2.2  Emission Inventory Development 
Emission inventories are usually developed 

using the following model 
 

E = EF . A . (1-ER)
 

Where E is the emission rate (e.g., kg/hr or 
tonnes/yr) of a given pollutant, EF and A are the 
emission factor and activity factors, respectively, 
and ER (0 < ER < 1) an emission reduction 
factor, which accounts for any emission control 
devices that may be applied to the source. The 
emission factor, EF, is the mass of a given 
pollutant or chemical species emitted per unit 
process variable. The activity factor, A, is the 
related process variable such as mass of fuel 
consumed, vehicle kilometers traveled, etc. in a 
given amount of time. In reality, emission and 
emission reduction factors can vary from source 
to source as well as with the value of the activity 
factor, type of fuel, operating conditions, age of 
the source, geographical location, time of year, 
and so forth. Not all of these complexities can be 
accurately represented in such a simple 
relationship, and more sophisticated emission 
models have been developed for very complex 
categories such as mobile source emissions 
(Miller et al., 2006). 
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Except in rare instances, emission factors or 
their equivalents are based on measurements. 
The easiest source class to characterize is large 
point sources, such as electric generating units 
or stack emissions from large industrial 
operations. Emissions from these facilities can 
be measured by direct sampling of flue gases – 
as long as reliable sensors and methods are 
available (they can be in situ or remote) and 
appropriate sampling techniques are used.1 
Using these techniques, gaseous emissions from 
large point sources, such as CO2, SO2, and NOx, 
can be estimated to better than +/- 20% over 
time periods as short as one hour (NARSTO, 
2005). 

Emissions from more dispersed and numerous 
individual sources are much more difficult to 
characterize and evaluate. Examples include 
fugitive (i.e., inadvertent) emissions from 
industrial sources, natural emissions from 
vegetation, agricultural emissions, emissions 
from small industrial or commercial sources, 
residential sources (e.g., particulate matter 
emissions from cooking or space heating), and 
large-scale biomass burning. For these types of 
emission sources, direct measurements may be 
difficult or they may be feasible for only a small 
sample of the sources in question. All of these 
factors lead to emission estimates that are more 
uncertain than for large point sources. These 
uncertainties can range from a factor of two to 
complete neglect of an unknown source or 
chemical precursor that upon later analysis turns 
out to be significant. 

On-road and non-road mobile source 
(automobiles, trucks, aircraft, locomotives, 
construction equipment, ships, etc.) are a good 
example of an important, but widely dispersed 
and variable, component of pollutant emissions. 
Over the past 50 years, considerable effort and 
resources have been expended in several 
developed countries to develop procedures for 
estimating emissions from mobile sources. The 
traditional approach for estimating automobile 
and truck emissions has been to measure 

                                                           
1 For example, when measuring particulate matter 
emissions it is necessary to mimic the cooling and flue (or 
exhaust) gas dilution processes that occur immediately after 
the emissions enter the atmosphere, as many “primary” 
particles are formed in this near-source region. 

emissions from dynamometer tests of 
representative vehicles in the laboratory. The 
dynamometer tests are run to represent typical 
driving cycles, and the vehicle emissions are 
measured in real time. These measurements are 
used as input to complex mobile source emission 
models that attempt to simulate vehicle fleet 
operating conditions for a wide range of urban, 
suburban, and rural settings. The problems with 
dynamometer test are that number of sampled 
vehicles may be too small to represent a 
statistically valid sample, and they may not 
represent the range of fuels used, driving cycles 
or conditions, environmental factors, and states 
of repair of the actual vehicles in use. 
Consequently, field measurements using 
instrumented chase vehicles, road-side remote 
sensing of vehicle plumes, chemical sampling of 
the air in traffic tunnels, and other experimental 
set-ups are used to check and fine tune mobile 
source emission models. In the future low-cost 
portable emission measurement systems (PEMS) 
and on-board diagnostic sensors (OBDs) may 
allow cost-effective sampling of a much larger 
sample of in-service on-road and non-road 
vehicles under real-world operating conditions. 
These data could greatly improve the accuracy 
of mobile source emission estimates. 

Because most sources are not equipped with 
continuous emission monitors to measure actual 
emissions, Equation 1 forms the basis of most 
data reported in inventories. Although the focus 
is often placed on the value of the emission or 
emission reduction factor, the activity factor is 
equally important. Activity factors can be 
developed from continuously monitored process 
data, but as with continuous emission monitors, 
these data are generally scarce. More frequently, 
activity factors are developed from economic 
activity data or activity surveys. Fuel 
consumption data are a good example of the use 
of economic activity data that are collected for 
reasons other than emissions, but can be used in 
the development of emission inventories. Data 
are usually available in the U.S. and Canada by 
type of fuel used, for various time periods 
(monthly or sometimes weekly), and for various 
geographical areas (counties or 
states/provinces). Information on construction 
activities can be used to develop emissions from 
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off-road construction sources. Population 
densities coupled with activity surveys can 
provide inventory developers with information 
on emissions from residential woodstove, 
fireplace, and open burning. Land use maps and 
satellite data are useful for estimating the types 
and densities of vegetative cover, which in turn 
are used to estimate biogenic emissions. In each 
case, emission estimates can be developed using 
data that have been collected for other purposes, 
such as for tax estimation, economic 
development, or land-use planning.  

Projections of future emissions also depend 
upon these data and estimates in their growth 
rates in future years. In the absence of 
significant technological change, past 
relationships between population growth and the 
types of activity factors noted above provide a 
good starting point for estimating future activity 
levels, and subsequently, future emission levels. 
 

3.2.3  Evaluating Uncertainty in Emission 
Estimates 

Uncertainties are introduced into emission 
inventories in a number of ways. Emission 
factors do not usually account for variability in 
emissions due to changes in source operating 
conditions, or across the individual sources that 
make up a source category. New technologies 
can change processes and emissions, and such 
changes will not be reflected in emission factors 
that were based on the original process. 
Emission factors that are based on idealized 
operations, such as use of vehicle operating 
cycles, do not accurately capture actual 
operation and therefore actual emissions. 
Measurement biases or errors introduce 
additional uncertainties into the reported 
inventory data. These differences can be 
associated with the location, time, or 
composition of emissions, leading to 
uncertainties in the spatial, temporal, or 
chemical data used in air quality models. 
Clearly, quantifying uncertainty is an essential 
‘best practice’ in inventory development and it is 
more efficient to obtain the information needed 
to assess uncertainty at the time the emissions 
data are developed as opposed to afterwards.  

Emission uncertainties tend to have a smaller 
impact on understanding and AQ management 

decisions when models are used to estimate 
changes in air quality over longer periods of 
time and across geographical areas that are of 
the same order of magnitude as the spatial scale 
covered by the inventories. In other words, 
national annual average pollutant concentration 
estimates are likely to have a lower uncertainty 
than concentration estimates for a specific urban 
area over the course of a single day, because the 
differences between actual and estimated 
emissions based on emission factors are more 
likely to average out over a longer period of time 
and over a broader area.  

As air quality models become more 
sophisticated to meet the demand of more 
specific AQ management questions more 
detailed emissions information is needed. The 
ability to model atmospheric processes over the 
course of a single hour with more detailed 
chemical reaction mechanisms and in smaller 
areas means that the differences between the 
actual emissions within the modeled area and 
time and the estimate based on an annual 
average emission factor may be significantly 
different. Such discrepancies can result in 
estimates of pollutant concentrations that do not 
reflect actual conditions. These differences can 
lead to misidentification of the most important 
sources within a given area or erroneous 
estimates of the specific emissions that need to 
be controlled for a given source type, as well as 
incorrect AQ forecasts and population exposure 
estimates.  

Characterizing the uncertainties in non point-
source emission estimates is not a simple task. 
Two general approaches are usually taken – 
bottom-up and top-down. In the bottom-up 
approach, uncertainties (bias and random error) 
in the individual measurements or parameters 
that make up the emission model are estimated 
(e.g., from field measurements similar to those 
described in the previous section) and 
represented as a probability distribution function 
(pdf). These uncertainties are then propagated, 
often using a Monte-Carlo approach, through the 
model to provide an estimate of the uncertainty 
in the emission estimate. An alternative bottom-
up approach is sensitivity analysis. A simple 
form of sensitivity analysis is to evaluate the 
sensitivity of emission-model output to its 
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various input values in terms of the partial 
derivative of the model output to the input 
parameter in question. This approach indicates 
the relative sensitivity of the emission model to 
its various inputs and enables a crude estimate of 
uncertainty by providing a measure of how 
much the emission estimate would change for a 
given change in an input parameter. 

In top-down evaluations of emission 
inventories or emission models, ambient 
measurements or other independent data are 
used to evaluate the accuracy of the emission 
estimates. The most effective applications of 
top-down evaluations are those that are 
combined with concurrent examination of the 
original bottom-up inventory data, so that the 
source of the errors can be identified rather than 
simply stating that the inventory is in error 
(Miller et al., 2006). One top down method is to 
compare temporal trends in emission estimates 
with past trends or to compare trends in the 
ambient concentrations of a pollutant (or in 
ratios of pollutants) with the trend in estimated 
emissions under conditions in which the effects 
of transport, chemical transformation, and 
removal can be neglected or accounted for. 
Results from of this kind of analysis are reported 
in Parrish et al. (2002) and CRC (2004). A 
description of this approach is also provided in 
NARSTO (2005). 

Other top-down methods for evaluating 
emission inventory uncertainties include using 
alternative methods for estimating emissions 
(such as comparing vehicular emission estimates 
based on vehicular distance traveled with those 
based on total fuel consumption), source 
apportionment techniques, and inversing 
modeling. Source apportionment (or receptor 
modeling) techniques use various multivariate 
statistical methods to infer source types, source 
location, and relative contribution from ambient 
measurements (Watson and Chow, 2005). These 
methods have been used to evaluate inventories 
of PM2.5 and VOCs (McMurry, Shephard, and 
Vickery, 2004; Watson, Chow, and Fujita, 
2001). 

Inverse modeling involves reformulating 
source-based air quality models so that emission 
source strengths are expressed in terms of the 
observed concentrations. In other words, the 

model is used to deduce the temporal and spatial 
emissions that explain the observed 
concentration field. Because of the limited 
spatial resolution of air quality models, this 
technique is most commonly used to deduce area 
sources (Petron et al., 2002; Park et al., 2003; 
and Gilliand et al., 2003). 
 
3.2.4  Weaknesses of Current State-of-the-Art 

Emission Inventories 
Over the past 40 years there has been 

considerable improvement in the accuracy and 
completeness of emission inventories, but 
considerable challenges still remain. As of 
today, N.A. air quality managers have a good 
understanding of the emissions from major point 
sources, and they have used this knowledge in 
developing effective actions for reducing them. 
Models for estimating emissions from mobile 
sources have been continuously improved. The 
importance of natural and biogenic emissions 
has been recognized, and this knowledge has 
affected the design of air quality management 
strategies in regions where these emissions are 
significant. In Canada and the United States, 
emission inventories and models can provide 
quantitative estimates of emissions at national, 
state or provincial, and county (or their 
equivalent) levels for many source categories, 
and there is an improved understanding of the 
relative importance of various source categories 
to specific air quality problems. Air quality 
managers can use these inventories to track 
emission trends and to evaluate the effectiveness 
of measures designed to reduce these emissions. 
In Mexico, emission inventories have been 
completed for the Valley of Mexico and the 
states bordering the United States, and in 
September 2006 Mexico released its first 
National Emissions Inventory. 

In spite of good progress, emission inventories 
in N.A. have significant weaknesses that will 
become increasingly important to address for 
continued success in dealing with future air 
quality problems. Recognizing these weaknesses 
helps provide guidance for improvements and 
for adopting best practices in inventory 
development programs in counties with less 
developed emissions databases. The main 
weaknesses identified by NARSTO (2005) are:  
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• Development of mobile source inventories, 
particularly regarding the speciation of 
volatile organic compounds, remains a 
challenging problem. National inventories in 
Canada and the United States have also 
indicated problems with the magnitude of 
carbon monoxide emissions and the 
temporal trend of nitrogen oxide emissions. 

• Emissions for important categories such as 
biogenic emissions, ammonia, fugitive 
emissions, open biomass burning, and many 
other area sources are difficult to determine, 
and they remain inadequately characterized.  

• Emission estimates for air toxics (e.g., the 
188 hazardous air pollutants designated by 
the U.S. EPA) are particularly uncertain 
since there are so many of these compounds, 
so many potential sources (many of them 
area sources), and so little data for 
establishing emission factors or speciation 
profiles. 

• Emissions of particulate matter and more-
importantly its chemical constituents, size 
distribution and key volatile and 
semivolatile precursors are in need of 
improvement across many source categories. 
Carbonaceous particles (organic and 
elemental carbon) are a large contributor 
from many sources and there is limited 
information for several of them. 

• Quality assurance and quality control 
procedures have not been strictly applied in 
the development of most North American 
emission models and inventories. In 
addition, the documentation of uncertainties 
and data sources in emission inventories has 
not been adequate to allow the uncertainties 
of the entire inventory, or of air quality 
models using the inventory, to be accurately 
estimated. These are issues that must be 
addressed in the initial design of a national 
inventory development program. Addressing 
them retroactively is expensive. 

• Of necessity, emission estimates must be 
based on a limited number of emission 
measurements. If this number is not 
representative of real-world activity, the 
precision and accuracy of estimates 
developed from these measurements will be 

limited. More measurements are needed and 
the issue of representativeness needs to be 
examined closely. 

• The process for developing information on 
emissions with the kinds of spatial and 
temporal resolution needed for location-
specific air quality modeling and intra-urban 
scale exposure estimation is problematic and 
a source of unquantified uncertainty in 
model results. 

• Methods used to estimate emissions of 
individual chemical species in emission 
models must be kept up-to-date if they are to 
provide accurate information. 

• Emission inventories must be developed and 
updated in a timely manner. 

• Differences in how emission inventories are 
developed in adjacent countries create 
difficulties for jointly managing air quality. 

 

3.2.5  Actions for Addressing Weaknesses 
Reducing known uncertainties in an inventory 

will provide a more accurate starting point for 
air quality management strategy development, 
which should result in more cost-effective 
approaches. Typically, management actions are 
initially focused on large point and mobile 
source emissions. Large point sources are the 
easiest to characterize and frequently the easiest 
to control. Mobile sources may be more difficult 
to completely characterize, but there are few 
points of manufacture. Thus, control devices can 
be readily installed during the manufacturing 
process. As emissions from these sources 
decline, however, remaining emissions are more 
evenly distributed across source categories that 
are even more difficult to characterize, model 
and control. These remaining sources will also 
grow as both population and economic activity 
increase and errors in emission estimates from 
smaller individual sources will have greater 
consequences. These consequences could range 
from wrongly identifying a pollutant that should 
be controlled to overlooking source categories 
whose control could result in more cost-effective 
emission reductions. As this situation is reached, 
it becomes increasingly important to address the 
kinds of emission inventory weaknesses 
described above. Clearly, if these pitfalls are 
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recognized in the initial phases of an inventory 
development program, it may be possible to 
avoid them or to address them in a more 
efficient manner. 

The recent NARSTO (2005) assessment 
provided eight recommendations to the countries 
of N.A. on how to address the shortcomings of 
their national emission inventories. The first 
recommendation was judged to be the most 
important. The others were ranked as having 
somewhat lower priority, but in some cases they 
may also need to be addressed in the course of 
meeting the first objective. Given the different 
degrees of inventory development across 
countries, regions, and even pollutants, the 
secondary priorities will differ for each situation.  
 

1. Reduce uncertainties associated with 
emissions from key under-characterized 
sources. 

Comparisons of national emission inventories 
with ambient measurements and other 
independent measures should be used to indicate 
which source categories and pollutants are 
inadequately characterized and reported. Of 
particular concern are non-point sources 
including on-road and non-road mobile sources 
as well as fugitive emissions from industrial 
facilities, landfills, sewage disposal systems and 
feedlots. Sources of organic compounds, 
carbonaceous particulate matter, ammonia, and 
hazardous air pollutants are typically not well 
characterized. Ideally resources should be 
targeted to reduce the greatest sources of 
uncertainty and focused on those source 
categories (or individual sources and conditions 
within these categories) whose control will be 
most effective in reducing costs and health risks 
while achieving air quality management goals. 
 

2. Improve speciation estimates. 
Contemporary air quality issues, such as 
particulate matter and ozone and the 
identification of hazardous air pollutant “hot 
spots,” require detailed information about the 
species being emitted from the sources. 
Contemporary emission inventories are weak in 
this regard. It is essential that source speciation 
profiles be continually updated and assessed. In 
addition, the related activity data must be 
developed to estimate more accurately speciated 

emissions of particulate matter and precursors, 
volatile organic compounds, and toxic air 
pollutants. 

Speciation is most important to the 
management of ozone and fine PM, but it can 
also be important to air toxics and to some 
extent climate issues (black carbon vs. organic 
carbon; different GHGs). More accurate 
quantification of the species being emitted will 
result in better air quality modeling results, and 
in better identification of and/or discretion in 
which sources should be controlled in to gain the 
greatest improvements in air quality and in 
human health, assuming that some of the more 
toxic constituents and their sources can be 
identified.  
 

3. Improve existing and develop new emission 
inventory tools. 

Technical advances in instrumentation and 
computation are enabling emission 
measurements and analyses that have been 
previously impractical. Examples of these 
innovations include portable emission 
measurement systems for direct measurement of 
emissions under real-world conditions and the 
application of various remote-sensing techniques 
for measuring emissions or verifying emission 
estimates. Continuing development of these and 
other technologies as well as consideration of 
different approaches to deriving emission 
information, are likely to improve emission 
inventory measurements and analyses. Funding 
agencies need to continue to support the 
development and application of new 
technologies for measurement of emissions and 
ambient concentrations of pollutants. 
Application of these technologies will assist the 
development of emission models that more 
accurately represent emissions from real sources 
in time and space. 
 

4. Quantify and report uncertainty. 
Uncertainties in emission estimates and the 
parameters or data are used in emission models 
must be quantified. Uncertainties in emission 
inventories, processors, and models of Canada, 
the United States, and Mexico are poorly 
documented. As a result, the reliability of 
emission estimates cannot be quantified. 
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Quantitative measures of uncertainty and 
variability must be a standard part of reported 
emission inventory data. Agencies responsible 
for producing emission inventories must develop 
specific guidance on how to prepare and report 
information on emission uncertainties. 

This recommendation is probably the most 
difficult to describe and implement. Quantifying 
the uncertainty of an inventory estimate, and 
subsequently the estimates of pollutant 
concentrations, will enable decision makers to 
assess the likelihood that the desired outcomes 
will be achieved. A highly uncertain inventory 
means that the desired air quality improvements 
are less likely to occur because there is less 
confidence that inventory estimates accurately 
describe the actual situation. The ability to 
assess the potential for strategies to achieve the 
desired results will help decision makers to 
determine what steps are most likely to yield 
improvements. 
 

5. Increase trans-national inventory 
compatibility and comparability. 

As air quality problems become increasingly 
global in nature, it is vital that emission 
inventory development and reporting programs 
be coordinated internationally. Although there 
have been substantial improvements in reporting 
national emission inventories in mutually 
consistent ways, further work is needed to make 
these diverse inventories more comparable 
across organizations, purposes, political 
boundaries, and time periods. International 
standards for emission inventory structure, data 
documentation, and data reporting should be 
developed. Such standards are needed to 
facilitate management of long-range transport 
and trans-boundary air quality issues. 

Inventories that are compatible across 
boundaries, and with inventories of other 
pollutants (GHGs, toxics, etc.), allows air 
quality managers to account for emissions that 
occur outside their domain of responsibility. 
This reflects the physical reality that pollutants 
do not recognize political boundaries. 
Comparability with past inventories enables air 
quality managers to more accurately assess the 
degree to which previous air quality 
management strategies have been successful. 

6. Improve user accessibility. 
The accessibility of emission inventories and 
emission models is impeded by the sheer size of 
the files and the cumbersome manner in which 
the data are reported and archived. As improved 
accessibility to emission data is critical to 
meeting the diverse needs of the user 
community, increased efforts should be made to 
facilitate user accessibility to emission inventory 
data and models through the Internet and other 
electronic formats. It is also suggested that 
emission inventories be made more transparent 
and easy to update. National inventories do not 
always contain the most recent emission 
information. Methods for allowing continuous 
updating with appropriately validated data from 
a variety of sources (researchers, industry, 
government agencies, etc.) need to be 
developed. 

As more groups are able to access inventory 
data quickly and easily, a better understanding 
of air quality problems can be expected and 
more alternative approaches to air quality 
management can be developed. The more 
alternative approaches that are available, the 
more likely it is that air quality will be improved 
in the most cost-effective manner. 
 

7. Improve timeliness. 
Timely and historically consistent emission 
inventories are essential for assessing the current 
emission environment (and for keeping abreast 
of economic conditions and changes in 
technology) and for tracking progress in 
improving air quality. Plans and processes need 
to be put in place for preparing and reporting 
national emission inventory data on a yearly 
basis. 

Timely inventory data more accurately reflect 
the actual situation. Ideally, inventories would 
be updated almost continuously so that air 
quality managers could see how the mix of 
emissions are changing due to external changes 
(population growth, changes in technologies, 
economic forces, etc.) and to changes in air 
quality management strategies. Continuously 
updated inventories remain far off, but a realistic 
goal is to minimize the time between when the 
inventory data are submitted and when they are 
reported. 
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8. Assess and improve emission projections. 
Realistic projections of future emissions are 
important for developing and assessing 
strategies for attaining air-quality standards and 
for evaluating future-year effects of new 
regulations. Emission projection methodologies 
for all emission inventory sectors should be 
evaluated to determine the accuracy of past 
projections and to identify areas for 
improvement. Attention should be paid to 
assuring the compatibility of short-range 
projections that are more typical of air-quality 
related emissions with the long-range 
projections that are made for climate-change 
applications. Projections of future emissions are 
also dependent upon the quality of the base-year 
emissions. Therefore, realistic projections 
cannot be made unless these base-year 
emissions are as accurate as possible. 

Because most air quality management 
approaches estimate the future effects of air 
quality management actions, it is important to 
understand what changes are due to the air 
quality management strategy and what changes 
are due to changes in population, technology, 
etc. Improved projections also provide guidance 
regarding the level of emission reduction that 
may be needed to achieve and maintain the 
desired air quality over the long term.  
 

3.2.6 Further Issues Regarding Emission 
Inventory Improvement 

Scale: There is a growing demand for reliable 
small scale emissions data. They are needed to 
model urban scale air quality for the purpose of 
improving population exposure estimates used in 
health research and in risk assessment and for 
control scenarios focused on local emissions 
(e.g., mobile sources, urban planning). At the 
local level this issue of scale is significant and a 
detailed understanding of source variability and 
how sources differ from the national average 
need to be included. This involves not only the 
differences in technologies (processes, control 
technologies, etc.), but also how the sources 
operate. If there are significant differences 
between the local practices and national 
practices, the inventories will need to account 
for them. In addition, small sources that are not 
important at regional and national scales and 

hence may not be required to report their 
emissions can be important at the local scale.  

Area and mobile sources are generally more 
important at the local scale and such changes in 
the mix of source types can result in air pollution 
issues at the local scale being different from 
those at a national or regional scale. A good 
example is PM2.5 – In the eastern United States 
sulfates are the key to PM2.5 reductions at the 
regional scale. At the local scale, however, 
carbonaceous PM tends to be the issue of most 
concern, because it is locally emitted (traffic, 
industries, open burning, and biogenic sources) 
and because the timescale of SO2 chemistry 
results in sulfur dioxide being a gas-phase 
problem locally, but a PM problem farther down 
wind. 

Clearly, developing a local scale inventory is 
very demanding. Often such efforts are 
conducted by local groups based upon their own 
techniques and/or assumptions. There is a need 
to consider how such parallel efforts that may 
involve differing approaches could be 
standardized and improved, including the 
assessment of hot spot emissions, interfacing 
with exposure models, such as the Regional 
Human Exposure (REHEX) Model, and intake 
fraction parameters. This latter parameter is the 
fraction of the emissions of a pollutant taken in 
by people (Marshall et al., 2003) and provides a 
means of weighting sources according to 
exposure potential. Primary emissions in a rural 
area and/or from high stacks have a smaller 
intake fraction than those emitted at ground level 
in cities and arguably, for health protection the 
latter types of sources should be more important 
to control. 

Groundtruthing Efforts: In current practice, 
inventories are most effectively used as the 
starting point for understanding the contributors 
to air quality problems. They form the basis for 
air quality modeling and for identifying the 
sources that are most significant within an 
airshed. Additionally, best practice dictates that 
receptor models, fuel-based (vs. vehicle-travel 
based) inventories, inverse modeling, and other 
approaches be used, independently, for 
inventory verification. This is important to 
undertake to identify problem areas in the 
inventories in order to minimize the impacts of 
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erroneous inventory data. This intercomparisons 
or evaluations may also help identify when the 
other, perhaps newer approaches are out-
performing the traditional approaches, thus 
leading to new models, different forms of input 
data and better emissions inventories. 

Costs of Emission Inventory Development and 
Improvement: The U.S. federal government 
currently invests approximately $25 million per 
year to develop and update emission inventories 
(NARSTO, 2005). This does not include the 
amounts spent by state and local agencies 
(estimated at about $10 million per year) or the 
additional costs that would be required to 
address the shortcomings identified in the 
current inventories, which are estimated to be on 
the order of an additional $35 million per year 
(NARSTO, 2005). In Canada, about $6 million 
(U.S.) per year is invested in compiling its 
national inventory, not counting local and 
provincial efforts, and Mexico has spent about 
$600,000 (U.S.) per year in developing its 
National Emission Inventory. The cost of 
addressing emission inventory shortcomings in 
Canada and Mexico are proportionally similar to 
those of the United States – about $6 million and 
$1 million, respectively (NARSTO, 2005). 

The cost of developing emission inventories is 
a function of their purpose. The relatively low 
cost of developing Mexico’s national emission 
inventory is a consequence of its relatively low 
level of detail and the use of previously existing 
information. At the other end of the scale, the 
Electric Power Research Institute spent $50 
million to quantify emissions of hazardous air 
pollutants from electric generation units (EPRI, 
1994). The American Petroleum Institute, the 
U.S. Department of Energy, and others spent 
about $6 million to measure combustion 
emissions from refineries. These higher cost 
examples reflect the greater expense of 
obtaining highly detailed information, such as 
speciation of organic and metal compounds, that 
are present in flue gasses at very low 
concentrations (NARSTO, 2005). The additional 
annual costs of addressing emission inventory 
shortcomings in Canada and Mexico would be 
about $6 million and $7 million (U.S.), 
respectively, over a period of 3-5 years.  
 

3.3 Measurement of Ambient Pollutant 
Concentrations 

Along with emissions data, ambient air 
pollutant measurements are part of the 
foundation of effective air quality risk 
management. While all measurements have the 
potential to play a role, the degree of support 
varies depending upon a number of factors. The 
type of measurements and the design of the 
measurement program are critical factors, but 
just as important is the amount of time and effort 
dedicated to analysis and interpretation of the 
data. When ambient pollutant observations and 
related measurements are examined to the full 
extent possible they can support multiple 
objectives, which includes: 
• Describing current risks and detecting 

potential future risks to human and 
environmental health; 

• Documenting trends in order to demonstrate 
efficacy of past and present policies (e.g., 
emission reductions); 

• Developing models capable of predicting 
ambient pollutant concentrations from 
knowledge of emissions and emission 
changes; 

• Providing information needed to derive 
quantitative relationships between ambient 
concentrations and human health (or other 
adverse effects on the environment, climate 
or visibility).  

Measurement data and most often routine 
monitoring data are central to AQ-health studies 
and the concentration-response functions (CRF) 
derived from this research. Ultimately, 
measurements can lead to new insight into the 
specific pollutants or sources posing the greatest 
risk to health, which can help in the 
development of more efficient risk management 
strategies. This section summarizes a range of 
issues related to how measurements best support 
air quality risk management. Protecting human 
health is one of the main motivations and thus, 
much of the discussion is geared towards that 
aspect of air quality measurements. However, 
other issues related to the measurement 
objectives listed above are also discussed 
including general guidance on technical issues to 
be considered in establishing a robust 
measurement program.  
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3.3.1  Application to Health Studies 
Exposure to air pollutants has the potential to 

lead to a variety of adverse health impacts (see 
Chapter 2). Not all such impacts are likely to 
have been identified and/or adequately 
characterized given the diversity of exposure 
scenarios, the diversity of the population and the 
myriad of possible biological pathways. A range 
of health research approaches and detailed air 
quality and exposure measurements are thus 
needed to continue to advance knowledge.  

The World Health Organization published a 
European Series Report on “Monitoring 
Ambient Air Quality for Health Impact 
Assessment” (WHO, 1999). The goal of that 
report was to describe strategies and methods for 
providing information on ambient air quality 
that would be adequate for health impact 
assessment. Many issues that are relevant to this 
chapter are discussed and therefore, it is 
recommended background reading.  
 

Concentration Response Functions 
For air quality risk management, CRFs based 

upon direct links between ambient observations 
of a range of air pollutants, as measured by 
standard monitoring networks, and acute and 
chronic impacts occurring within the general 
population are crucial. Demonstrating such ‘real 
world’ associations also establishes that air 
pollutant effects are relevant to actual 
conditions. This necessitates that ambient 
measurements continue to be obtained to support 
both acute and chronic exposure health studies. 
The level of detail that these measurements 
should provide, including direct personal 
exposure studies or other extrapolations related 
to exposure (e.g., intake fraction, population-
weighted concentrations), will depend upon the 
type of study they are intended to support. There 
is also considerable demand for better 
information on the specific pollutants, mixtures 
and/or sources that have the greatest impact 
upon health. This can only be satisfied by 
enhancing ambient measurement and exposure 
research activities and fully capitalizing on the 
recent advances in measurement capabilities 
(Wexler and Johnston, 2006). In addition, 
advances in statistical methods that can 
simultaneously exploit geographic and temporal 

variations in the interrelationships among 
pollutants coupled with new monitoring 
strategies should provide new insights regarding 
the most harmful pollutants or mixtures.  

One of the key challenges in working with 
ambient pollutant data is to derive CRFs for 
individual pollutants and for pollutant mixtures 
that are appropriate for risk management or cost-
benefit analysis. They must be scientifically 
defensible and their uncertainties and/or their 
strengths and weaknesses need to be understood 
in detail. Significant challenges arise from 
confounding and differential exposure error 
among pollutants. Among other things, an 
association between a health endpoint and a 
given pollutant may be because that pollutant is 
acting as an indicator for an unmeasured 
pollutant (gas or particle) or mix of pollutants 
(Brook et al., 2007). In this situation the 
relevance of a CRF derived from these data must 
be questioned and applications (e.g., cost-benefit 
analysis) must be done with clearly stated 
caveats. Research is needed to determine the 
true implications of such caveats and the 
appropriate interpretation of predicted health 
benefits.  

Conceptually, CRFs should be the same 
among different urban populations given similar 
distributions of time activity and susceptible 
individuals and, within the range of 
uncertainties, this is generally the case for PM. 
However, there remains some variability and the 
causes have not been resolved. Differences in 
the air quality data used to derive the CRFs 
likely play a role in that there are typically 
variations between how the monitoring sites 
relate to the population (i.e., their location(s)) 
and to their actual exposures (e.g., prevalence of 
air conditioning, which influences indoor 
penetration, differs geographically). It is also 
likely that the nature of the confounding among 
pollutants (measured and unmeasured) and their 
exposure errors differs among locations or cities. 
These issues lead to uncertainty in regards to 
which CRFs should be used to guide risk 
management. Heterogeneity among risk esti-
mates and possible causes were discussed during 
the NERAM V Colloquium (Samet, 2006). 

For cost-benefit analysis it is not possible or 
reasonable to have separate CRFs for every city 
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or population of concern. Meta-analyses have 
therefore been undertaken to derive ‘generic’ 
CRFs. This approach assumes, however, that the 
air pollutant for which the meta-analysis is 
undertaken is truly the cause of the adverse 
effects as opposed to being an indicator for some 
unmeasured component in the pollutant mixture. 
If the latter is the case then it is feasible that the 
relationship between the ‘indicator’ and the true 
causative pollutant(s) could change among study 
locations and hence the ‘mean’ effect from the 
meta-analysis would not be appropriate. This 
issue could be relevant with respect to nitrogen 
dioxide (NO2), for which an association with 
mortality has been detected in a number of cities 
(Stieb et al., 2003, Burnett et al., 2004; Samoli et 
al., 2006).  
 

Ambient Measurements to Indicate Exposure 
No matter how detailed, ambient 

measurements cannot reflect what a person or 
most members of a population are truly exposed 
to. These measurements are an indicator for 
some aspect of the air pollutant stresses that the 
population is confronted with. In reality, the 
relationship between these indicators and the 
actual exposures of the population may differ 
from pollutant to pollutant and from one 
monitoring site to the next. Site location relative 
to the population and selection of the pollutants 
to measure at each site are therefore critical 
issues.  

Acute exposure-effect studies and chronic 
exposure-effect studies have different 
requirements regarding site location. The former 
requires that the measurements accurately reflect 
temporal variations in the population’s exposure 
while the latter is interested in how exposure 
levels vary across space. This could range from 
differences from one location in a large city to 
another (intra-urban) or differences between 
cities (inter-urban). For both types of studies the 
ideal measurement data are rarely if ever 
available for both financial and technical 
reasons. Therefore, compromises are necessary 
and it is important to understand the limitations 
of and implication in using the available meas-
urements for health studies or risk assessment.  

The best practice for both acute and chronic 
studies is to measure multiple pollutants at any 

site that is established and to operate more than 
one site in the region containing the population 
of interest. European criteria for site coverage 
and representativeness is discussed in Kuhlbusch 
et al. (2004). In their examination of the 
networks reporting to AirBase they presented an 
example for the Ruhr district in Germany and 
assessed differences among countries examining 
the extent to which monitoring networks were 
being operated in accordance to the air quality 
directives with respect to protection of human 
health. In terms of site locations some of the key 
criteria to consider in network evaluation are: 
• Sites are established which provide data on the 

highest concentrations 
• The network comprises both, hot spot and 

urban background sites 
• Hot spot sites are representative for at least 

200 m² 
• Urban background sites are representative for 

several km² 
• Urban background sites are representative for 

similar locations not in their vicinity 
• Sites are established which are representative 

for the exposure of the general population 
The spatial distribution of the population, local 

physical features (e.g., topography, shorelines) 
and prevailing meteorological conditions are all 
important to study when selecting site locations 
or choosing sites to be used in health studies. 
With this information a better understanding of 
the link between each set of measurements and 
the population will be realized and population-
weighted concentrations can be derived with 
more confidence. This perspective also helps 
identify and address weaknesses in the 
monitoring network, via new sites or special 
studies (e.g., saturation monitoring, deployment 
of mobile labs).  

Gaseous air pollutant time series developed 
for epidemiological research (acute effects) on 
the Toronto population have been based upon 
the average hourly concentrations from 3-4 
different representative sites (e.g., Burnett et al., 
1997). Their locations reflect some of the main 
outdoor environments people commonly 
encounter, such as residential and commercial 
areas and near roadway conditions. In many 
European cities it has been common practice to 
measure in the urban background and at 
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“kerbside” or traffic locations to obtain 
information on the range of concentrations 
experienced (Kuhlbusch et al., 2004). 
Combining data from multiple monitoring sites, 
potentially using population-based weighting 
factors, will typically provide a time series that 
is a better representation of the exposure 
variations experienced by the population. 

It is important to consider how long of a time 
series will be needed when a new set of 
measurements are initiated in support of acute 
effects studies. A rule of thumb is that 2-3 years 
of daily air pollutant measurements for a 
population of about 1 million will provide 
sufficient power for reasonably precise 
determination of the magnitude of an acute 
effect on total non-accidental mortality. 
Obviously, the more data the better, as shown in 
Volume 2 of the 2004 USEPA Criteria 
Document for Particulate Matter (PM). The 
precision of the risk estimates tends to increase 
as the product of the daily death rate and number 
of PM measurement days increases (EPA, 
2004). Constructing a time series of data with 
values every day is not an issue when hourly 
measurements are available. When integrated 
samples collected over 24 hr periods (daily 
samples) are all that is possible (e.g., for 
measurements of some PM chemical 
constituents) then common practice is to collect 
samples less frequently than every day. For 
many years TSP and PM10 samples were only 
collected every sixth day in most circumstances. 
Although an improvement, many new networks 
are only providing samples every third day, 
which means it will still take three times longer 
to have sufficient statistical power for an acute 
effects or time series study.  
 

Judging Site Representativeness  
For the most part, comparisons of monitoring 

site data within cities have demonstrated that 
day to day variations in outdoor pollutant 
concentrations (i.e., the acute exposure signal) 
are reasonably-well correlated across a city. 
However, this varies by pollutant and needs to 
be assessed before the data are used in time 
series studies (i.e., acute health effect studies). 
For example, average inter-site correlations (i.e., 
for all available pairs of sites in Toronto in 

2000-2003) for CO, SO2, NO2, O3, PM2.5 and 
PM10 are: 0.41, 0.78, 0.77, 0.90, 0.96 and 0.84, 
respectively. Similar correlations are present 
among stations in Vancouver and Montreal. The 
poorer correlation for CO compared to NO2, 
which are both predominantly vehicle-relate 
pollutants in the city, can be explained by the 
uncertainty in the measurements as opposed to 
being due to more heterogeneity in 
concentrations. In Canada at least, 
improvements in the monitoring of CO or the 
treatment of the available data are needed before 
it should be considered in health studies.  

For typical monitoring networks the pair of 
sites with the minimum correlation likely 
indicates a lower limit of the representativeness 
of using a single site to estimate population 
exposure. A low minimum correlation may also 
indicate that a given site is not appropriate by 
itself for use in a time series study. Table 3.3.1 
shows how the minimum correlation varied by 
pollutant and season within a smaller and larger 
region of Toronto. Not surprising, the 
representativeness of a given site’s 
measurements decreased with distance and 
PM2.5 varied most consistently across the region. 
However, the degree of correlation for PM2.5 is 
not likely to be the case for the different PM 
chemical constituents. Three weeks of two per 
day sulphate, organic carbon and elemental 
carbon measurements across 3-7 separate sites in 
the downtown core of Toronto showed that 
sulphate was homogeneous while the 
carbonaceous constituents varied considerably 
(Brook et al., 2002). Organic carbon for which 
there are many urban sources, from traffic to 
cooking, was the most variable. The minimum 
correlations in Table 3.3.1 reveal that a single 
site’s NO2 measurements have a greater 
potential to misrepresent the temporal variations 
experienced by the population. In Table 3.3.1 
the lowest correlation between two sites was 
0.08 (NO2 in the warm season), suggesting that 
there is good potential for local conditions to 
influence the actual exposure experienced by 
members of the population residing further from 
the city center. A closer look at the site in 
question would be needed before a single 
measurement time series could be used for the 
larger Toronto domain.  
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Table 3.3.1 Minimum site to site correlation in daily average concentration variations across Toronto and 
outlying suburbs during 2000-2003. The Toronto correlations are for the group of sites within 
the core of the city (approximately a 20x20 km area). The metro area correlations include 
these sites plus sites in the suburban area (approximately a 40x40 km area). Warm 
corresponds to the warm season (May-September) with the cold season being October-April). 

 

   Toronto  Metro area 

PM2.5 Annual 0.91 0.90 

 Warm 0.93 0.90 

 Cold 0.92 0.86 

NO2 A 0.56 0.29 

 W 0.43 0.08 

 C 0.67 0.40 

SO2 A 0.62 0.43 

 W 0.53 0.23 

 C 0.77 0.42 

O3 A 0.83 0.76 

 W 0.77 0.69 

 C 0.77 0.62 

 
In general, the correlation in day to day 
variability across Toronto is reasonable for NO2, 
O3, SO2 and PM2.5. As suggested above, 
combining the time series from a group of sites 
can improve the representativeness of a time 
series. For example, for NO2 the average and 
minimum correlation between the downtown 
Toronto site and the sites within the city are 0.83 
and 0.75. These values increase to 0.89 and 0.86 
when each of the sites is compared to the 
average time series generated by a combination 
of the Toronto sites. Similarly, when considering 
the suburban sites (i.e., those that are further 
away) the minimum correlation increases from 
0.58 to 0.66 when the day to day time series is 
represented by the combined sites as opposed to 
just the central downtown site.  

Simple examination of site to site correlations 
provides insight regarding representativeness of 
a time series and can help explain differences 
among pollutants in observed health effects from 
time series studies or in measured personal 
exposures. However, it is difficult to specify 
criteria for a minimum correlation value, below 

which the sites and pollutants being considered 
would not be appropriate for deriving exposures 
to include in a time series study. This issue 
requires further attention, including closer 
examination of site representativeness and the 
sensitivity of epidemiological analyses, 
particularly those attempting to consider 
multiple pollutants, to this source of exposure 
error. Logically, this error can be expected to 
attenuate the significance of true associations, 
but in multi-pollutant analyses there could be the 
potential to “transfer” the association to the 
pollutant that can be monitored at fixed sites 
with greater spatial representativeness and/or 
with a stronger link to actual personal exposures.  
 

Links to Population and Personal Exposure 
Within limits, monitoring site locations can be 

optimized to best represent the potential 
exposure of the population. When combining 
information from sites the data from each site 
can also be weighted according to the size of the 
population within a certain radius. 
Measurements at sites with a greater 
surrounding population are thus counted more 
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heavily. A potentially stronger link to exposure 
can be derived by considering intake fraction 
(Marshall et al., 2003). This approach is more 
appropriately used for weighting the pollutant 
exposure risks posed by emissions from a 
variety of sources. Thus, assigning an intake 
fraction weighting to an ambient measurement 
also requires knowledge of the sources 
contributing to the observations and how the 
measurement, the source location and the 
population of interest are related, including 
estimates of pollutant concentrations in a range 
of microenvironments. Probabilistic exposure 
models, such as the REHEX model (Winer et al., 
1989; Fruin et al., 2001), also provide an 
approach for estimating, from ambient 
concentrations, the range of exposures expected 
among the population. Among other things, 
these models require more detailed spatial 
information on concentrations, either by 
interpolating the observations or through the use 
of air quality models.  

Short term field studies can help identify 
optimum site placement and the nature of the 
relationship with personal exposures. There have 
been several exposure studies examining how 
well outdoor measurements correspond to actual 
personal exposures. Brauer and Brook (1997) 
showed that day to day variations in outdoor 
central site O3 measurements agreed reasonably 
well with the temporal variability in average 
personal exposures, but not necessary for all 
people. In addition, the amount of agreement has 
been found to vary from city to city and among 
pollutants (Sarnat et al, 2001; Kim et al., 2006). 
The latter represents one source of differential 
exposure error.  

PM2.5 has been the primary focus of most 
recent exposure studies and the results generally 
show that each individual’s day to day personal 
exposure time series is correlated with the 
variations in the outdoor levels. However, there 
is wide variability from person to person 
depending upon their time activity, the 
predominant indoor microenvironments that 
they spend time in and the indoor sources of 
PM2.5 in these locations. Nonetheless, the 
median personal to ambient correlation among a 
sufficiently large group tends to be positive and 
strong enough to indicate that, on average, the 

exposure variations experienced by the 
population are captured by the monitoring site 
measurements. Attempts have also been made to 
separate personal PM2.5 exposures into particles 
of indoor and outdoor origin (Wilson and 
Brauer, 2006). This has helped, for example, to 
assess if there are differences in the impact on 
respiratory health of these two broad classes of 
PM2.5 (Ebelt et al., 2005). 

Ideally, when developing a time series for an 
acute effects study or quantifying the exposure 
gradient in a cross-sectional study (chronic 
exposure effects) the link to personal exposure 
should be tested. To date, there have been very 
few exposure studies geared towards comparing 
chronic personal exposure to the outdoor 
concentration “assigned” to that individual 
(Wheeler et al., 2006a,b), which is usually the 
concentration estimated at their home.  
 

Limitations in Linking Air Quality 
Measurements and Health Data 

In addition to the exposure errors, it is also 
important to consider the nature of the health 
effects being studied and the type of health data 
that are or will be available. True acute 
responses likely arise immediately after 
exposure (i.e., within minutes to hours), but may 
linger and/or continue to grow in severity for at 
least a few days. This time course is not well 
understood, but can be expected to differ 
depending upon the physiological functions 
being affected (e.g., respiratory, cardiovascular), 
from person to person and depending upon how 
the exposure conditions change during this 
period. Administrative health data do not 
provide the time resolution needed to improve 
understanding of this etiology. Emergency room 
visits, hospital admissions, deaths, absenteeism, 
etc., are recorded as daily counts corresponding 
to midnight to midnight. While at a minimum 
this implies that only daily pollutant averages 
and exposure metrics derived from these values 
are necessary, hourly measurements can be 
utilized in the form of daily maximum readings 
over shorter durations. This permits some 
assessment as to whether the acute responses are 
associated more strongly with short term peak 
levels or higher concentrations sustained over 
24-72 hr periods. Confounding among these 
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different metrics will hinder definitive 
conclusions about what acute exposure period is 
of most importance to the population at large. 
However, it may be possible to gain some 
insight for more detailed follow-up using 
different study designs (e.g., prospective panel 
studies) and thus, hourly measurement data are 
valuable to obtain.  

There are relatively few health and air quality 
databases for chronic exposure studies. Thus, 
when health data relevant for air pollutant effect 
studies are assembled, the exposure information 
is most often derived from whatever is available. 
In this case, prospective air quality 
measurements can be useful if they can be 
shown to correctly reflect the past and present 
gradient in exposure within the cohort. In the 
rare circumstance that a cohort is developed 
prospectively it is more likely that air quality 
measurements can be included in the program 
(e.g., Spengler et al., 1996; Peters et al., 1999). 
Even so, demonstrating that such measurements 
are representative of longer term or even lifetime 
exposure remains an issue (Brook and Spengler, 
1997) and mobility of cohort members may need 
to be taken into consideration (Jerrett et al., 
2006).  
 

Improving Air Quality Information for 
Health Research 

More targeted air quality risk management 
will ultimately require more knowledge 
regarding the specific pollutants or sources 
posing the greatest risk to human health. 
Presumably, standards for these pollutants (e.g., 
a chemical component found on PM2.5) could be 
established or control measures could be 
implemented on specific sources. Acquiring the 
necessary knowledge requires highly specialized 
health studies. These need to be supported with 
much more detailed ambient air pollutant 
measurements and a better understanding of the 
relationship between ambient concentrations and 
actual exposures. These are likely to come from 
field studies as opposed to monitoring programs. 
The types of measurements needed and other 
health research related needs that the 
atmospheric science community can potentially 
satisfy were recently discussed by NARSTO 
(www.narsto.org).  

There have been considerable advances in 
measurement capabilities due to extensive 
research on PM2.5 during the past decade. 
Applying these capabilities for health research 
can be expected to lead to new understanding 
(Wexler and Johnston, 2006). However, even 
stronger collaboration among health, exposure 
and atmospheric scientists will be needed to take 
full advantage of these advances given the level 
of understanding required to operate equipment 
and design effective studies. At the same time 
there is increasing interest in studying a wider 
range of health endpoints (e.g., cancer risks, 
impacts on the fetus and trans-generational 
effects) and a wider range of air pollutants (e.g., 
toxics, radon, aeroallergens). This will hopefully 
lead to a more holistic understanding and 
approach to risk management. However, 
achieving this level of understanding will be 
challenging, requiring a sustained multi-
disciplinary research effort in environmental 
health. 

As monitoring programs are established or 
expanded, enhancing the spatial coverage of the 
sites could potentially improve the applicability 
of the data for future chronic health studies. 
However, even with close contact with health 
researchers it is difficult to anticipate all the 
areas that might need to be covered unless there 
are specific cohorts in mind. Even still, resource 
limitations usually make it impossible to 
monitor all locations, especially if only done on 
the speculation that a health study might use the 
information.  

Intra-urban variations in exposure are now 
recognized as an important signal to exploit in 
chronic studies and again, it is not likely 
possible to operate enough monitors. Mobile 
measurement platforms (e.g., Bukowiecki et al., 
2002; Westerdahl et al., 2005; Yli-Tuomi et al., 
2005; Kolb et al., 2004; Polina et al., 2004; Guo 
et al., 2006; Xu et al., 2006) can assist in 
studying spatial patterns and in optimizing site 
placement. They are becoming more common as 
a facility for monitoring agencies and current 
advances in technology are allowing even more-
sophisticated measurements to be obtained. 
However, measurements alone cannot provide 
all the spatial detail desired. Thus, alternate 
sources of information and/or a range of spatial 
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models, statistical or physical, are becoming 
increasingly important to develop. These will be 
discussed below in Section 3.5. 
 

3.3.2  Tracking Progress 
One of the primary objectives of monitoring 

networks is to track progress towards achieving 
standards and to insure that good air quality is 
maintained. Most mature networks have 
multiple sites that are in standardized locations, 
several if not all of the criteria pollutants are 
being monitored and long data records have 
been and are continuing to be collected. Thus, 
they are well-suited to satisfy this primary 
objective. Beyond selecting the right locations 
and pollutants to measure, best practice clearly 
dictates that for studying trends a long, unbroken 
record is important to maintain. This is because 
air quality changes can be small and gradual and 
are obscured by meteorological variability. Lack 
of continuity in measurements, lack of sensitive 
enough measurements and under-representation 
in some geographic areas hinders trend analysis. 
Consequently, best practices also dictates that 
closing or moving monitoring sites with long 
records should be considered very carefully. 
When a site is moved both the new and old site 
should be operated simultaneously for as long as 
possible in order to quantify concentration 
differences. 

Demonstrating progress in direct response to 
implemented policies is now being referred to as 
‘accountability’. Ultimately, this should extend 
beyond just documenting air quality 
improvements to demonstrating that the desired 
benefits have been realized. This would include, 
for example, improved public health, recovering 
ecosystems and fewer poor visibility events. 
However, tracing back along the full 
accountability chain is very challenging (HEI, 
2003) and the implications it might have for how 
air quality measurements are undertaken have 
not been fully resolved.  

If accountability is limited to detecting the 
expected air quality improvements resulting 
from a new policy or a specific intervention then 
time series length may not be as important as for 
detecting gradual trends. However, sufficient, 
high quality baseline measurements in advance 
of the emission reduction(s) are critical as is 

continuation of these measurements after the 
reductions have been implemented. Existing 
sites providing the base line data need to be 
identified and, if necessary, improved (e.g., 
adding high sensitivity instruments or new 
measurements).  

Air quality models and emissions inventories 
have improved significantly over the past 10-15 
years. This includes them being more widely 
applied (i.e., more accessible to a large number 
of users) and availability of sufficient computing 
resources for longer term simulations. Thus, 
there is an opportunity for models to play a 
greater role in informing monitoring activities. 
They can be used to simulate the magnitude of 
the change at the sites being used for tracking 
progress or demonstrating accountability. This 
may indicate that more sensitive measurements 
will be needed given the anticipated changes or 
that additional measurements at existing sites or 
at new locations would help to more-effectively 
and more-rapidly demonstrate accountability. 
Models can also be applied to identify the most 
useful measurement locations for “filling in” 
information between sites and, as will be 
discussed below, they can provide a more 
continuous picture of spatial patterns by merging 
their output with the measurement data. In some 
countries or jurisdictions, previous data and 
models have provided knowledge to allow 
downsizing of networks with limited or no loss 
of information (e.g., leaving sufficient sites to 
monitor trends and model population 
exposures), which helps reduce costs. Thus, 
given their current level of development, best 
practice clearly dictates that models be used as 
much as possible to optimize and expand the 
usefulness of air quality measurement programs.  

A weakness of many existing networks is that 
they have focused more-extensively on urban 
areas. Consequently, there are much fewer rural 
measurements and the length of their time series 
is shorter. For example, worldwide, there are 
few long term trends on rural NOx levels, despite 
its importance to understanding regional O3 and 
PM2.5 and the impact nitrogen deposition can 
have on ecosystems. Furthermore, this limits our 
current ability to assess how the growth in the 
size and density urban areas (e.g., sprawl) is 
impacting proximate regional air quality. Urban-
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rural pairs of measurements (Brook et al., 1999) 
are becoming more common. They are essential 
for untangling contributions and trends 
attributed to local/urban sources vs. upwind 
sources from regional scale transport. 
Conversely, some classes of pollutants have 
traditionally been measured in rural and remote 
areas (e.g., POPs, acid deposition, sulphate) and 
thus, understanding of the conditions in 
populated areas is more-limited. 

More and more agencies responsible for air 
quality measurements are enhancing activities at 
selected sites (supersites or AQI sites or core 
sites) and potentially collecting fewer 
measurements at sites in between these 
locations. This approach supports a greater 
amount of air quality science at the supersites 
and can provide cost savings. The level of 
activity at the supersites often varies over time 
depending upon funding and the current “hot 
issues.” However, stability for a core set of 
measurement is important since these supersites 
are likely to be ideal for studying long term 
trends and potentially for accountability 
purposes. The measurements obtained at the “in 
between sites” or “satellite sites” typically 
depends upon the objectives of the program 
funding the work. With respect to air quality and 
smog, such sites are most likely to monitor O3 
and PM2.5 or PM10. This is driven by the fact that 
these pollutants are closer to or over existing 
standards and there is a perception that they are 
most important with respect to health effects. 
While this latter point is valid, in many areas 
these pollutants exhibit less spatial variability 
implying that fewer sites are needed. This is, 
perhaps, less likely for PM2.5 because although 
its total mass may vary relatively slowly over 
space some chemical constituents, particularly 
those related to primary emissions, will 
potentially vary much more rapidly. Thus, more 
knowledge is needed to in order to determine 
how best to optimize the number of PM2.5 sites 
and PM2.5 speciation sites.  
 

3.3.3 Modeling, Process Studies and Source 
Apportionment 

Identifying specific management strategies 
requires a good conceptual model of the causes 
of the air quality problems. Both monitoring and 

detailed field study data are necessary to develop 
this conceptual model and to obtain a greater 
understanding of atmospheric processes. Spatial 
and temporal coverage is the greatest asset of 
monitoring network data. Combined with 
meteorological information (e.g., trajectories) 
relatively complete conceptual models can be 
devised and considerable information about 
contributing sources areas can be obtained (e.g., 
Brook et al., 2005). As highlighted by discussion 
and examples in Chapter 6 of the NARSTO PM 
Assessment, all forms of data analysis, from the 
simplest to the most complex, will provide 
insight. However, this requires that resources be 
continually dedicated to this purpose and that 
experienced analysts, with backgrounds in 
atmospheric chemistry, meteorology and 
statistics, are employed.  

Monitoring network data can also play a 
valuable role in model evaluation. This role is 
becoming more important because many models 
are being run continuously for AQ forecasting 
and detailed field studies cannot be undertaken 
continuously. These new long term modeled 
datasets are offering new opportunities to learn a 
great deal about how the models perform and the 
quality of the emissions information. While the 
network data tend to lend themselves more to 
operational evaluations of the model, there are 
opportunities for diagnostic evaluations as well 
(see Section 3.3). Increased use of continuous or 
semi-continuous particle composition 
instruments for monitoring can be expected to 
provide greater opportunities for such 
evaluations. Network data are also critical to 
define the model’s initial conditions. Advances 
in rapid data assimilation (Menard and 
Robichaud, 2005) have been occurring for this 
purpose. These need to be continued since there 
are many potential applications of these 
assimilated datasets.  

More detailed measurements, which can only 
be sustained for relatively short field studies are 
ultimately needed to study atmospheric 
processes (dynamical, chemical and physical) 
and for more-detailed diagnostic model 
evaluations. The scope of these studies can vary 
greatly from a small team collecting 
measurements to study one process (e.g., Makar 
et al., 1998) related to one model module to 
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large collaborations across institutions (e.g., 
EMEFS, ICARTT; Dennis et al., 1993; Frost et 
al., 2006). Just as there has been advances in 
what can be reliably measured at monitoring 
sites there have been significant gains in what 
can be measured during field studies. Methods 
have improved and some advanced technologies 
are commercially available and are reasonably 
reliable and straightforward to operate with 
highly qualified personnel. This means that the 
ease with which a field study with highly 
comprehensive and technical measurements can 
be launched is now much greater than 5-10 years 
ago. This is beneficial for obtaining, quickly, 
much more data at more locations from which 
one can study, in detail, source apportionment 
and atmospheric processes. However, the risk 
has never been greater for valuable data to be 
under-interpreted. Best practice obviously 
dictates that this be avoided. Thus, with these 
new capabilities comes an increased need for 
highly qualified and creative experts in data 
analysis along with careful advance thinking 
regarding the underlying hypotheses motivating 
any venture into the field.  
 

3.3.4  Public Information 
In the long run informing the public is critical 

to the process of air quality management. They 
are the ultimate decision-maker since when a 
large enough majority decide that an issue is 
important elected officials are more likely to 
respond. This can create opportunity for 
progress on air quality. Science/environmental 
advisors must be ready with the right advice, 
based upon emissions, measurements and 
modeling information, when government leaders 
are prepared to make decisions. In recent years, 
health research results have garnered 
considerable attention in the media and, as 
discussed above, air quality measurements are 
critical to this research.  

In terms of public information, the Air Quality 
Index (AQI) has been utilized for many years. In 
cities or regions where there are more frequent 
bad air days the public is generally more aware 
of AQ issues, at least partly due to the publicity 
of the AQI. The form of the AQI is similar in 
many countries, reporting air quality using 
descriptive terms such as good, moderate, poor, 

very poor, unhealthy, etc., (www.msc-
smc.ec.gc.ca/aq_smog/aqcurrent_e.cfm; 
http://airnow.gov/index.cfm?action=static.aqi). 
This approach is easier for the public to 
understand and act upon as opposed to reporting 
actual pollutant concentrations. It has been 
designed to identify the worst effects that may 
result from the mixture of pollutants currently 
being measured and to describe the prevailing 
air quality. However, ozone and particulate 
matter are more often the driving pollutants (i.e., 
leading to an AQI other than very good or 
good). The AirNow website (http://airnow.gov/), 
which reports actual ozone and PM2.5 
concentrations all across the U.S. and Canada 
along with colour codes indicating the AQI, 
represents a significant advance in the 
information being publicly provided. It allows 
for the spatial extent of elevated air pollutant 
levels to be visualized and for users to quickly 
compare their region to others. The systems 
developed to obtain and synthesize this 
information and present it in near real time have 
only recently become possible and this 
infrastructure is also critical for improved AQ 
forecasts. Similar systems for providing realtime 
AQ data and/or AQI values exist for many 
countries (e.g., the Netherlands: 
www.lml.rivm.nl/data/smog/index.html; 
Mexico: www.ine.gob.mx/). These are 
continually evolving and being integrated into 
multi-national systems.  

The increase in knowledge regarding air 
pollutant health effects has been leading to 
growing interest in upgrading or modernizing 
the AQI. One such program is the Air Quality 
Health Index (AQHI) being developed in 
Canada. This is currently being pilot tested in 
the Province of British Columbia 
(http://www.airplaytoday.org/). The goal of this 
pilot is to introduce the AQHI to the public and 
gather feedback, especially from people who are 
sensitive to air pollution. The unique feature of 
the AQHI is that it is based upon recent 
epidemiological results from across Canada. In 
addition, it considers multiple air pollutants 
simultaneously and they all contribute to the 
index value in every case. 

The AQI has typically been for reporting 
current conditions so that the public can respond 
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immediately. In recent years, however, the 
capacity to predict future O3 and PM2.5 
concentrations, using physical and/or statistical 
models, has improved. Thus, the public can be 
informed in advance. There are also efforts 
being planned to predict more of the pollutants 
considered in the AQI or AQHI (e.g., SO2, 
NO2). Consequently, air quality advisories are 
being supplemented with daily air quality 
forecasts (www.msc-smc.ec.gc.ca/aq_smog/ 
aqforecasts_e.cfm; www.msc-smc.ec.gc.ca/ 
aq_smog/chronos_e.cfm), but the information is 
not usually widely distributed (e.g., radio, 
television) until high levels, warranting an 
advisory, are predicted. Thus, despite the value 
of daily information for susceptible individuals, 
it is unclear if it is influencing the general 
public. Daily forecasts are also available in the 
U.S. (www.arl.noaa.gov/ready/ozone/), where 
some media are publishing maps every day. 
Countries outside of North America are also 
providing forecasts (e.g., 
www.epa.vic.gov.au/Air/AAQFS/default.asp).  

Regular air quality forecasts, made possible 
through real time reporting and assimilation of 
measurements and advances in air quality 
modeling, clearly does present an additional 
opportunity, beyond advisories, to inform the 
public of air quality issues (i.e., increase public 
awareness). A telephone-based survey 
undertaken after the original air quality advisory 
program for Canada had started indicated there 
was partial success in achieving this goal (Stieb 
et al., 1996), but few actually changed their 
behaviour. Ideally, when public information 
programs are planned there should be some 
collection of baseline data, as opposed to 
retrospectively initiating such activities. This 
should give a truer picture of how the public’s 
awareness and/or behaviour changed.  

Ultimately, poor air quality situations need to 
be minimized through preventative measures 
(i.e., new policies on emissions or activities 
producing emissions) and increased public 
awareness help create the climate for political 
action. However, providing routine, reliable and 
understandable air quality information to 
susceptible members of the population allows 
them to reduce their own exposure. This should 
not be underestimated as an important 

component of air quality risk management. 
Therefore, communication plans and health 
messages require careful consideration and 
regular evaluation for effectiveness. 
 

3.3.5 Technical Issues in Establishing a 
Measurement Program 

Air pollutant measurements should only be 
taken if there is an ongoing commitment to a 
recognized standard of quality, and a plan for 
data archival and for interpretation. Poor quality 
and/or incomplete data or data of unknown 
quality have limited usefulness. It must also be 
recognized that knowledge and technology are 
continually improving and thus, to the extent 
possible, new measurements should seek to use 
the most current, accepted methods. This will 
increase the probability that the data are 
acceptable far into the future. In the long run, a 
small amount of high quality measurements will 
be of more value than many measurements 
collected with insufficient documentation, 
quality assurance and interpretation.  
Air quality measurement activities generally fit 
into one of two categories: 
1. Monitoring - A core set of systematic 

measurements at well-selected locations that 
are maintained indefinitely for trend 
analyses (i.e., evaluate effectiveness of 
current policies), to determine if an area is 
complying with or achieving an official air 
quality standard or guideline and to identify 
emerging problems as soon as possible, 
which may involve ongoing environmental 
health studies (e.g., epidemiological 
studies).  

2. Field studies - A relatively short period (<2 
years) of more-detailed or more-specific 
measurements collected within a well-
defined geographic area or at a given 
location or for a given population. These 
data are essential for development of 
conceptual models, source-oriented models, 
more-refined source apportionment studies 
and for understanding the relationship 
between emissions, ambient concentrations 
and personal and/or population exposure. A 
variety of prospective health studies may 
also derive their exposure information from 
air quality field studies. 
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Data from monitoring programs lend 
themselves to a standard set of reports 
documenting current conditions, trends and 
comparison with other geographic areas. Quick 
release of such information into the ‘right hands’ 
helps to keep air quality management issues in 
the forefront. A range of user-friendly software 
tools that can process the air quality data along 
with meteorological data are becoming common. 
This enables air quality scientists and managers 
to examine some of the causes of pollution 
events in near real time, providing information 
that, in the past, could take a year or more to 
obtain.  

Field study data are usually more complex and 
less standardized. Sufficient time and resources 
need to be dedicated to working with the data 
after the study. At a minimum, 1-2 years is 
likely necessary. To guide the planning of the 
study and subsequent data analysis there needs 
to be a set of testable hypotheses in place well 
before the study begins. Generation of new 
scientific knowledge is likely part of the study 
objectives and thus the first official reporting of 
the data tends to be in peer-reviewed journals. 
This is the only approach for ensuring credibility 
of the data, which is ultimately necessary for air 
quality managers to be confident with 
subsequent policy decisions. Prior to journal 
publication, preliminary results often appear at 
conferences and before that formal workshops 
help maintain momentum and offer an 
opportunity to combine data and build 
consensus. Air quality managers or their 
advisors should participate at this stage in order 
to stress the policy issues they are expecting the 
results will help inform.  

Air quality measurement programs are 
expensive and so in advance, must have clear 
short and long-term objectives. Ideally, the 
program will be sufficiently flexible and broad 
to support multiple objectives, some foreseen 
and others not yet appreciated. Additional 
resources/expenses to insure data completeness, 
quality, analysis, interpretation and reporting 
should not be overlooked since they are likely to 
be incremental (i.e., a small cost relative to the 
overall cost of obtaining and maintaining the 
data). The key technical issues to consider when 
establishing a measurement program are: 

• What to measure and how often 
o Ideally, multiple pollutants should be 

measured at the same site to assist in 
interpretation and to serve more than 
one objective 

o Temporal resolution; could range from 
seconds to days 

o Measurement methods to be utilized 
o Length of time series to be collected 
o Personnel needs in the field and 

lab/office 
o Criteria for introduction of new 

technology or additional pollutant 
measurements if the measurements are 
part of a longer term program. 

• Siting criteria and where to measure 
o Impact of local sources - may be desired 

or important to avoid 
o Type of sites include: source-oriented, 

such as curbside or other high impact 
areas (e.g., hot spots); local or 
neighborhood scale; urban background; 
regional background (indicative of long 
range transport) 

o Representativeness to population and/or 
to region needs to be assessed 

o Geographic coverage and spatial density 
of sites if the program involves a 
network 

o Site access, serviceability and security 
o Documentation of site meta-data 

• Quality assurance (QA) 
o Required level of accuracy, precision 

and data completeness 
o Frequency of collection of specific QA 

measures (e.g., duplicates, blanks, zeros, 
spans, calibrations, external audits) 

• Data archiving and reporting 
o Data turn-around time and policy for 

data exchange and criteria for permitting 
use in publications 

o Provision of data to national or 
international public archives 

• Consistency with methods used at other 
sites in the same and different networks and 
between countries 

Addressing these technical issues, which will 
be expanded upon below, before measurements 
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start helps ensure that the data are of greatest 
value. In establishing a measurement program it 
may also be relevant to consider the potential 
applicability of the data for evaluating models 
and also for integrating the data with model 
output and other information to improve the 
detail and coverage of ambient concentration 
information (see below). Linkages to personal 
exposures and the ability to quantify the degree 
of exposure error associated with using the 
measurements for health research may also be 
necessary to consider. 
 

What to measure and how often 
For a wide range of both gaseous and 

particulate pollutants Chapter 5 of the 
assessment published by NARSTO (McMurry, 
Shephard, and Vickery, 2004) provides 
considerable detail on what can be measured, the 
methods available, how reliable they are and 
reasons such measurements might be needed 
(e.g., for health effects studies, compliance 
monitoring, visibility, scientific understanding, 
etc.).  

When feasible, greater frequency of 
measurement (i.e., finer time resolution) is 
preferred because this permits a much better 
understanding of source contributions and 
atmospheric processes (Wexler and Johnston, 
2006). If a standard exists then its ‘form’ or 
‘metric’ (e.g., hourly maximum, 8 hour 
maximum, 24 hour, annual) will dictate that a 
certain resolution be achieved. Inclusion in a 
real time reporting program, such as may be 
needed for air quality index and air quality 
advisory purposes or for air quality forecasting, 
will also likely demand that data be available on 
a frequent basis (e.g., hourly). Choice of 
resolution also has an impact upon the resources 
needed for QA, data storage, as well as data 
analysis and interpretation activities. Ultimately, 
the time resolution that is measured is dictated 
by instrument capabilities.  

Although air quality standards or other types 
of regulations/guidelines require that several 
common pollutants are monitored indefinitely, 
several other pollutants or trace gases are 
important to measure in support of air quality 
management. This wide range of trace 
atmospheric chemicals can be classified in a 

variety of ways. Here we choose to consider four 
classifications, however with any such attempt, 
the distinctions are blurred. These are:  

• Pollutants formed during combustion 
• Pollutants released from the surface or 

fugitive releases 
• Volatile organic compounds (VOC) 
• Secondary pollutants.  

Table 3.3.2 provides a summary of pollutants 
under each category and highlights important 
requirements and considerations for their 
measurement. Arguably the largest group, in 
terms of quantity of emissions, contain 
pollutants associated with combustion 
emissions. Many of these pollutants are 
produced and emitted simultaneously, which 
presents opportunities for co-management. This 
includes nitrogen oxides (NO, NO2 or NOx), 
carbon monoxide (CO), fine particles (PM2.5), 
ultrafine particles (‘ultrafines’ or PM0.1) and, 
depending upon the presence of sulphur in the 
fuel, sulphur dioxide (SO2). The first two, plus 
SO2 and some form of particles (e.g., total 
suspended particulate-TSP, particulate matter 
less than 10 µm in diameter-PM10) are generally 
referred to as criteria pollutants. 

Particles are monitored according to total mass 
below a specific size, but in the case of 
ultrafines measurements are based upon total 
number. Combustion particles are also 
composed of many different chemical 
compounds, which will be discussed below. 
However, one important particle phase 
constituent that should be explicitly included in 
this group is black carbon (BC). Also, referred 
to as elemental carbon or soot, BC is being 
measured more frequently due to its strong link 
to traffic emissions, especially diesel particulate 
matter, which is becoming more and more 
recognized as posing a risk to health. In 
Germany, the National Environment Agency has 
implemented a BC ambient concentration limit 
of 8 µg/m3 (arithmetic annual average value) and 
regulations in other jurisdictions (e.g., 
California) are being considered or are in place). 
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Table 3.3.2 Air pollutant classes, measurement capabilities and other issues to consider. 
Pollutant Class Examples Measurement Capabilities Comments 
Combustion 
Emissions 

Nitrogen oxides 
(NOx or NO2) 
 

Can be measured with instruments that provide hourly or 
better time resolution 

• Off the shelf use of most instrumentation will not 
correctly measure NO2 due to interference from 
other forms of oxidized nitrogen such as nitric acid, 
particle nitrate and peroxyacetyle nitrate (PAN). 

• Unknown inlet losses from some of these species 
leads to additional uncertainty 

• Relative size of this interference increases further 
away from high NO emissions areas (e.g. large 
cities) and when atmosphere is more 
photochemically active (i.e. summertime) 

• The nature of this interference should be understood 
before reporting and using NO2 concentrations.  

 Carbon monoxide 
(CO) 
Sulphur dioxide 
(SO2) 

Can be measured with instruments that provide hourly or 
better time resolution 
 

• Measuring the low concentrations present in many 
areas requires higher sensitivity instrumentation. 

• Since these low levels are below standards network 
managers are tempted to stop measurements or pay 
less attention to the quality of the low concentration 
valuests. This greatly hinders the use of these data 
in studying atmospheric processes, source 
apportionment and health effects. 

 Carbon dioxide 
(CO2) 

Can be measured with instruments that provide hourly or 
better time resolution 

• Links climate issue (i.e., greenhouse gas emissions) 
and air quality issue 

 Fine particles 
(PM2.5) 
 
 
 
 
 

Total mass can be measured with hourly or better 
resolution, but the techniques available have limitations. 
Integrated sampling on pre-weighed filters is the most 
widely accepted approach, but is not without uncertainties. 
Instrumentation now exists for automated, semi-continuous 
measurement of the main chemical constituents. 

• A portion of PM2.5 is semivolatile and this is the 
main cause of the measurement uncertainty 

• Main contributors to PM2.5 mass are organic carbon 
compounds (40-60%), sulphate (20-50%), nitrate 
(0-50%) and ammonium (5-15%).  

• The latter three have been successfully measured in 
many locations and countries via filter sampling and 
laboratory analysis.  

• Measurement of the carbonaceous material, which 
is typically separated into elemental (EC) and 
organic carbon (OC), is more uncertain. A 
significant difference exists among the different 
approaches and among different laboratories 
determining OC and EC 

• Sample collection artifacts caused by semivolatile 
OC and relatively high blank filter concentrations 
for OC lead to considerable uncertainty. 
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Pollutant Class Examples Measurement Capabilities Comments 
 Black carbon (BC) Semi-continuous measurement approaches are commonly 

used. 
The simplest measurement technique is based upon light 
attenuation once a filter collects sample over a pre-
determined length of time. 
British smoke, coefficient of haze and soiling index are 
predecessors to the present day instruments measuring BC 
via light absorbtion. 

• When BC is measured from filter samples using 
thermal techniques it is typically referred to as EC 
and OC is often measured at the same time. 

• The distinction between OC and EC is operationally 
defined and method specific.  

• For BC or EC there is strong link to traffic 
emissions especially diesel PM 

 Ultrafine particles 
(UFP) 

Measurement is based upon the total number of particle 
counts (per cubic centimeter) for all sizes below 0.1 µm in 
diameter.  
A condensation particle counter (CPC) operated with no 
specific size separation at the inlet essentially measures 
UFP because particles below 0.1 µm completely 
overwhelm the remaining counts above this size (i.e., for all 
the rest of the particles from 0.1 to ~100 µm) 
One minute or better time resolution is possible 

• The smallest particle size present varies between 
0.005 µm (5 nanometers) and 0.02 µm (20 nano-
meters) and so it is important to know the smallest 
detectable size and corresponding count efficiency 
for each CPC utilized for UFP measurement. 

• Electrostatic classifiers upstream from the CPC 
yields information on numbers of particles within 
many size ranges (i.e., particle size distribution).  

• Typical systems (scanning mobility particle sizers – 
SMPS) can discriminate 32 or more size ranges or 
bins from 0.01 µm to 0.9 µm, providing a size 
distribution every 10 minutes or better.  

Non-combustion 
surface or fugitive 
releases 

A ammonia (NH3) 
Methane (CH4) 

Continuous or semi-continuous methods for NH3 are 
available. 

• Ammonia plays a role in PM2.5 formation therefore 
improved knowledge of its behaviour and emissions 
is needed for PM2.5 management. 

 Pesticides 
(persistent organic 
pollutants – POPs) 

Low frequency filter and PUF based samplers are 
commonly used. 
Daily samples are very rare. 

• Monitoring requirements may be country-specific 
and/or specified in international agreements (e.g. 
Stockholm Convention requirement for POP 
monitoring). 

 Resuspended dust 
(PM10-2.5 or >PM10) 

PM10-2.5 is traditionally included as part of PM10 or TSP 
measurements. 
Filter-based technique are typically used, but continuous 
PM2.5 instruments can be adapted for PM10-2.5 

• Data limitations hinder determination of the health 
risk posed by PM10-2.5 and feasibility of managing 
ambient concentrations 

• Sources include road dust, wind blown dust from 
agricultural practices and from industrial facilities 
(e.g. mining and smelting), bioaerosols (e.g., pollen, 
spores) 

 Total reduced 
sulphur compounds 
(TRS) or H2S  

Very few of these pollutants are measured routinely and the 
techniques are widely variable depending upon the 
compound 

• Releases from industrial processes and waste 
management 

• Examples of sources are pulp mills, sour gas flaring 
and certain agricultural practices 

• Data are also limited due to a lack of regulatory 
requirements for monitoring and/or the localized 
nature of the emissions 
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Pollutant Class Examples Measurement Capabilities Comments 

Secondary 
pollutants 

O3 Can be measured with instruments that provide hourly or 
better time resolution 

 

 ~ 60-70% of PM2.5 Instrumentation now exists for automated, semi-
continuous measurement of the main chemical 
constituents. 

• Sulfate, nitrate and ammonium is essentially all 
secondary. 

• Secondary organic aerosols varies in amount from 
near zero to 50% or more of the OC. 

 Some VOCs and 
SVOCs 

Semi-continuous to nearly continuous measurements are 
possible for some compounds using research grade 
measurement methods. 
Integrated samples with canisters or traps are common. 

• Even the more routine approaches for 
measurement for compounds such as 
formaldehyde and PANrequire highly trained 
operators and/or capable analytical laboratories.  

 Other oxidants (e.g., 
H2O2, OH) 

Research grade measurement methods are possible • Measurement can be very important for 
understanding atmospheric chemistry. 

• They are only undertaken during detailed research 
studies. 

• Measurement is difficult as methods are 
expensive, experimental and challenging to 
implement and some of the compounds of interest 
are very short-lived in the atmosphere. 

Volatile and semi-
volatile organic 
compounds (VOCs 
and SVOCs) 

100s of individual 
compounds 
Examples: 
Benzene 
Tolulene 
Xylene 
1,3, Butadiene 
Isoprene 
 

Total non-methane hydrocarbons (NMHC) can be 
measured with hourly or better resolution. 
Semi-continuous measurement methods are possible for 
some individual VOC and SVOC compounds.  
Air samples can be collected in the field and analyzed 
with a good degree of accuracy and precision for the 
lower molecular weight compounds (i.e., fewer than 
about 10 carbon atoms).  
Larger molecules and the more-oxygenated species are 
more difficult to measure with confidence. Sorbant traps 
are more commonly used. 

NMHC provides limited information since the 
compound(s) responsible for the higher 
concentrations (i.e., the dominant fraction of the total 
VOC) and/or the temporal variation will vary and 
cannot be discerned. In addition, inlet losses, which 
are not necessarily the same for all the VOC and 
SVOC species, adds uncertainty to the measurement. 
VOC and SVOC measurement is a labour-intensive 
and expensive. 
In many cases the dominant species are not those of 
greatest interest from the standpoint of either 
atmospheric chemistry (i.e., O3 or PM2.5 formation) 
or toxicity.  
Commercially-available systems for time-resolved, 
real-time measurement of some compounds require 
highly trained operators and/or very capable 
analytical laboratories 
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Carbon dioxide (CO2) is typically the most 
abundant trace gas in combustion emissions 
thereby linking, at the source, the issues of air 
quality and climate change (note that BC and 
aerosols are also important pollutants regarding 
climate). All of the pollutants mentioned above 
can be measured with instruments that provide 
hourly or better time resolution and that are 
capable of reliable, realtime data storage and 
transmission. With the exception of the particle-
related measures, regular, automated QA or 
calibration can be included in monitoring 
routines. Calibration of the particle instruments 
is generally not possible because absolute 
standards are not available. Other approaches to 
insure data quality are thus, necessary. 

Another relatively distinct class of pollutants 
of importance to measure can be characterized 
as being associated with non-combustion surface 
or fugitive releases. This includes both those 
related to human activities and natural 
emissions. For many of these compounds current 
capabilities do not permit high frequency 
measurements. Agricultural emissions such as 
ammonia (NH3) and methane (CH4), as well as 
dust, pesticides (persistent organic pollutants - 
POPs) and bioaerosols fit in this class. Releases 
from a range of industrial processes and waste 
management are also important sources. In 
addition to the pollutants listed just above, 
reduced sulphur compounds (e.g., H2S) best fit 
into this class of pollutants. Similarly, 
resuspended dust, which is typically in the 
coarse (PM10-2.5 or PMcoarse) particle and giant 
particle (i.e., >PM10) size ranges, best fits in this 
class. This includes road dust, wind blown dust 
from agricultural practices and from certain 
types of industrial facilities (e.g., mining and 
smelting).  

Very few of these pollutants are measured 
routinely due to the lack of reliable, cost-
effective techniques, because there are no air 
quality standards that necessitate monitoring 
and/or because they are only a problem in 
localized areas. For example, total reduced 
sulphur compounds (TRS) or H2S can be serious 
issues in the vicinity of pulp mills, sour gas 
flaring and certain agricultural practices. In 
addition to country-specific air quality 
standards, international agreements often 

necessitate some level of monitoring. For 
example, POPs are routinely measured at several 
locations in support of the Stockholm 
Convention (www.pops.int/).  

With respect to current air quality risk 
management issues, ammonia (NH3) and coarse 
particles (PM2.5-10 or PMcoarse) are considered to 
be the most important to monitor or otherwise 
gain more information on their levels and spatial 
and temporal variation. Ammonia plays a role in 
PM2.5 formation and thus, improved knowledge 
of its behaviour and emissions is needed to 
manage PM2.5. PMcoarse has traditionally been 
included as part of PM10 or TSP measurements. 
However, as the monitoring focus shifts to PM2.5 
the need to continue to manage the coarse 
particle fraction is becoming an independent 
issue. At present, data limitations hinder 
determination of the health risk posed by 
PMcoarse and assessment of the feasibility of 
managing its level, especially given the range of 
natural and anthropogenic sources that 
contribute. 

Secondary compounds, which are 
distinguished by the fact that they form in the 
atmosphere, represent an important class of air 
pollutants to measure. A large fraction of the 
chemical constituents found on PM2.5 (fine 
particles) are secondary. This includes sulphate, 
nitrate, ammonium and some organic species. In 
the gas phase, ozone (O3) is the most well-
known and commonly measured pollutant. 
However, there are several other secondary 
oxidants, acids or VOCs of importance, either 
because of their potential to have health or 
environmental effects or because of their role in 
atmospheric chemistry. Examples are hydrogen 
peroxide, the hydroxyl radical, PAN, nitric acid, 
nitrous acid, hydrochloric acid, formic acid, 
acetic acid, formaldehyde, acetaldehyde, 1-3 
butadiene and acrolein. Some of these may be 
emitted directly (i.e., primary pollutant), but 
atmospheric formation is likely the most 
important source.  

Although O3, PM2.5 and some specific 
secondary constituents of PM2.5 (e.g., sulphate 
and nitrate) can be measured with relative ease, 
it is much more difficult for most of the other 
secondary compounds. The methods available 
are expensive, experimental and challenging to 
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implement and some of the compounds of 
interest are very short-lived in the atmosphere. 
Yet their measurement can be very important for 
understanding atmospheric chemistry. 
Consequently, when possible, measurements are 
undertaken during detailed research studies. 
Even the more routine approaches for 
measurement, such as exist for compounds such 
as PAN and formaldehyde, requires highly 
trained operators and/or very capable analytical 
laboratories.  

Volatile and semivolatile organic compounds 
(VOCs and SVOCs) are associated with both 
combustion and fugitive emissions as well as 
secondary formation and are thus part of all of 
the three classes above. SVOCs are also found in 
both gas and particle phase depending upon their 
properties and ambient conditions. However, 
due to the large number of compounds, their 
complexity, the challenging nature of their 
measurements and the tendency for many to be 
toxic, VOCs and SVOCs are considered here to 
be a separate class of air pollutants.  

Total gas phase non-methane hydrocarbons 
are often measured with relatively simple 
instrumentation at routine monitoring sites. 
However, such measurements provide a limited 
amount of information since the compound(s) 
responsible for the higher concentrations (i.e., 
the dominant fraction of the total VOC) and/or 
the temporal variation will vary and cannot be 
discerned. In many cases the dominant species 
are not those of greatest interest from the 
standpoint of either atmospheric chemistry (i.e., 
O3 or PM2.5 formation) or toxicity. In addition, 
inlet losses, which are not necessarily the same 
for all the VOC and SVOC species, adds 
uncertainty to the measurement. It is important 
to distinguish between CH4 and the remaining 
VOCs because the former is often found in 
much higher concentrations and behaves 
differently in the atmosphere (e.g., has a much 
longer lifetime).  

Measurement of individual VOC and SVOC 
compounds is necessary to provide insight into 
their contributions to O3 and PM2.5 formation. In 
addition, they are useful for source 
apportionment and in order to characterize ‘hot 
spots’ of high exposure to toxics. Air samples 
can be collected in the field and analyzed with a 

good degree of accuracy and precision for the 
lower molecular weight compounds (i.e., fewer 
than about 10 carbon atoms). Larger molecules 
and the more-oxygenated species are more 
difficult to measure with confidence. In all 
cases, VOC and SVOC measurement is a 
labour-intensive and expensive. Although there 
are commercially-available systems capable of 
time-resolved, real-time measurement of some 
compounds, these require highly trained 
operators and/or very capable analytical 
laboratories and careful consideration of the uses 
of the data and their subsequent storage is 
necessary.  
Particle Composition 

A large amount of information on PM2.5 mass 
measurement and PM2.5 sampling and chemical 
analysis is provided by Chow (1995). Since that 
publication there have been significant advances 
in semi-continuous measurement of nitrate and 
sulphate, OC and EC. These measurements, 
although more challenging than semi-continuous 
mass measurement and than the traditional 
approach of using filters and laboratory 
methods, are providing new insights in the 
sources of PM2.5. Some discussion on the 
various technologies being developed and 
applied is included in the NARSTO Assessment 
(McMurray, Shepherd and Vickery, 2004) and 
an overview of some of the new insights these 
instruments have enabled can be found in 
Wexler et al. (2006). 

Organic carbon is one of the most challenging 
aspects of PM2.5 measurement. As indicated 
above, sampling leads to uncertainties. The other 
main difficulty is that not all of the specific 
chemical compounds contributing to the total 
OC are known. In general, only about 20% of 
the OC can be consistently identified. These are 
chemical species such as polycyclic aromatic 
hydrocarbons (PAHs), alkanes and a large 
variety of organic acids. There is a considerable 
amount of ongoing research on the chemical 
speciation of specific organic compounds and 
much more data, although far from routine, now 
exist. There is a growing body of evidence of 
particle surface chemistry contributing to the 
uptake of organic mass and altering the chemical 
nature of the compounds present. Such processes 
need to be understood much better, as does the 
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emissions of OC and the contribution for natural 
sources (primary and secondary OC) before OC 
can be understood sufficiently to model specific 
control strategies. Thus, organic material on 
PM2.5 currently represents one of the greatest 
and most-important challenges to the scientific 
community.  
 

Siting criteria and where to measure 
Location of measurement and the immediate 

surroundings have a large impact upon the 
concentrations observed. The monitoring 
objectives play a large part in dictating the types 
of locations that are desirable. This typically 
leads to more than one network being necessary 
to support all issues. The USEPA describes four 
categories of networks and sites and lays out the 
general purposes of the overall program and of 
each network on their website: 
www.epa.gov/air/oaqps/qa/monprog.html. 
Similarly, a range of site categories, their 
purposes and criteria for inclusion in 
EuroAirNet are described at: http://air-
climate.eionet.europa.eu/databases/EuroAirnet/e
uroairnet_criteria.html. 

Standardization is important to consider for 
monitoring networks and this because more 
challenging when they span multiple countries. 
Clearly, strict siting criteria need to be adhered 
to. For example, criteria for particulate 
monitoring in British Columbia are detailed at: 
www.env.gov.bc.ca/air/particulates/amgv1pnc.ht
ml.  

On a broad geographic scale sites can be 
classified as either being remote, regional, urban 
background, urban exposure hot spot or 
industrial. The spatial scale or ‘footprint’ that 
each type of site can represent clearly varies 
from being nearly continental for remote sites to 
less than neighbourhood scale for industrial 
sites. Kuhlbusch et al. (2004) show a 
breakdown, by country, of what type of station - 
traffic, industrial or background; monitoring 
sites contributing to the European AirBase 
dataset fall into. There is considerable variability 
among the 21 countries examined in the 
distribution of station type and with respect to 
what fraction is urban, suburban or rural. Sites 
supporting air quality risk management typically 
fall within the urban exposure hot spot to 

regional scale. The latter type of site is best 
situated to provide information on transboundary 
transport as well as the general conditions in the 
rural area surrounding, but upwind of nearby 
urban areas (i.e., what is blowing into our cities 
from sources upwind). Ideally, such a site will 
be representative of at least a 20,000 km2 area. 
The former type of site is best typified by 
measurements in high traffic areas. These urban 
exposure hot spot sites should be representative 
of conditions that the general population is 
exposed to on a regular basis and/or of the 
conditions over a neighbourhood experiencing 
higher concentrations due to the amount or type 
of emissions in the vicinity. Environmental 
justice issues are leading to an increase in the 
interest in studying high exposure 
neighbourhoods. With the exception of 
industrial sites, the specific location of 
measurement should not be directly impacted 
upon by local emissions or by nearby 
obstructions to wind flow. The definition of 
local varies from the urban background to the 
regional sites ranging from about 2 km to 25 km, 
respectively. Obstructions could be adjacent 
buildings in an urban area or the edge of a forest 
clearing at a rural or regional site.  

The height of measurement is also an 
important siting criteria. Closer to the surface 
the measurements can be impacted upon by local 
dry deposition or local surface emissions or 
resuspension of dust. At regional and remote 
locations, 10 m is often the standard height as 
long as there are no nearby (~50 m) 
obstructions. In urban areas the concept of 
breathing zone enters into consideration, but 
there is a much greater risk that a very local 
emission will influence such a low 
measurement. Furthermore, low nighttime 
mixing heights tend to enhance this effect. 
Breathing zone measurements may be desired 
for specific exposure field studies, but are less 
likely to be representative of the urban 
background and, as well, not likely of the 
conditions occurring within a hot spot. 
Alternatively, in cities higher measurement 
heights such as rooftop locations tend to provide 
a better indication of the urban background and 
its temporal variation (Brook et al., 1999). 
Rooftops offer additional security for the 
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equipment because they are difficult to access. 
This raises a key point about finding secure, 
accessible sites with power, communications 
and a high likelihood of long term stability, 
especially in urban areas and given budget 
limitations. The point is that compromise is 
sometimes necessary when selecting a site 
because few locations are “perfect” and 
opportunity to have access to a reasonable 
location may be difficult to find given time 
constraints.  

Existing measurements and/or past 
experiences can provide considerable insights in 
selecting measurement sites or designing 
networks. Air quality models can provide 
guidance and are also valuable for data analysis 
and for expanding spatial detail (i.e., conditions 
between sites). As many of these sources of 
information as possible should be used to 
optimize and enhance sampling strategies.  
 

Quality Assurance 
Documentation on the quality assurance (QA) 

measures and expectations that are or will be 
followed throughout a measurement program 
helps ensure the data’s value and that they are 
not misinterpreted by other users. It is entirely 
the responsibility of the data generator(s) to 
initiate and uphold this plan and to make users 
of the data aware of the QA details. Providers of 
the funding for measurements should demand 
that evidence of a QA plan be available before a 
program proceeds. Conversely, QA details and 
other data limitations are important for data 
users to understand to ensure that correct 
conclusions are drawn.  

Measurement methods and types and model 
numbers of the instrumentation used should be 
recorded, as well as any changes during the 
program. Details of the measurement site, such 
as latitude, longitude, elevation (above MSL), 
inlet height and design and proximate emissions 
and obstructions (photos), are also necessary to 
document. This is referred to as site “meta data.” 
Most commercial instruments have known 
detection limits and levels of precision and 
accuracy as well as information on interferences. 
Nonetheless, precision and accuracy targets for 
the measurements need to be quantified and the 
actual values being achieved should be 

determined routinely to ensure a failing piece of 
equipment is identified and replaced quickly to 
avoid data loss. Duplicate or repeated 
measurements of the same samples and analysis 
of standards with known, traceable 
concentrations are, therefore, critical to 
undertake routinely to track precision and 
accuracy, respectively. The amount of resources 
needed for a measurement program is impacted 
upon by the frequency of QA measurements 
(e.g., number of site visits, amount of standard 
gases used), but, as stated above, this aspect 
should not be underappreciated. On the other 
hand, when QA measurements are being made 
(e.g., ‘zero’ or ‘span’ readings) actual 
measurements are being missed and thus the 
appropriate balance needs to be established.  

AQ measurements that involve sample 
collection in the field followed by chemical or 
gravimetric analysis in the laboratory require 
QA in both the field and the lab. With respect to 
the field, one of the most important QA 
measures is the collection of field blanks. 
Whatever the approach to capturing the sample 
(e.g., filters, denuders, canisters, passive 
sorbants, traps or cartridges), at least 10% of the 
samples analyzed in the lab should be field 
blanks. These procedures should be clearly 
stated in the QA plan and the resulting data need 
to be rigorously analyzed to ensure data quality 
objectives are upheld and/or adjusted.  

QA measurements should be based upon 
concentration levels that are typical for the site 
and that are within the measurement range of 
interest to the program. QA samples should also 
be introduced into the instrument or the 
analytical procedure (i.e., for laboratory 
analysis) in a manner that mimics the real 
measurement process and the conditions during 
measurement as much as possible. In general, 
the more experimental the measurement method 
the more challenging the QA and more frequent 
QA checks are usually necessary. As discussed 
in the NARSTO Assessment (McMurray, 
Shepherd and Vickery, 2004), for some 
measurements appropriate standards are not 
available. In this case, method intercomparison 
can provide information to judge the level of 
confidence in the data. With respect to current 
AQ health issues of concern, BC and UFP 
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measurements are hindered by the lack of 
standards.  
 

Data archiving and reporting 
Long term storage of final measurement data, 

including the QA data and site meta-data, is of 
utmost importance. At the same time data 
accessibility throughout the future needs to be 
simplified and rules for providing the data to all 
users also need to be considered. Whenever 
possible, data should be archived at their native 
temporal resolution since averaging to longer 
time periods will likely lead to unrecoverable 
loss of information that may be of value in the 
future. Given the present costs of storage media 
(hard drives, DVDs, etc.) archiving one-minute 
data is no longer an issue.  

A key issue with AQ measurement programs 
is ‘data turn-around time’. Objectives for this 
and rules for how other users can or cannot 
report the data need to be established. Faster turn 
around can be expected to increase the value of 
the data assuming that the more current the 
information, the greater the number of interested 
users and the greater the impact of publicizing 
what is being observed. There is an increasing 
demand for real-time data and data products 
reported via websites and the media (see Section 
3.2.3.4 below). As indicated above, this is 
possible for a growing number of pollutants 
because of improved instrumentation, automated 
QA and communications. Continued improve-
ments in these areas can be expected to reduce 
subsequent QA work and to increase data usage 
and publicity.  

There are a number of recognized national or 
international data archives or portals for data 
access. Each has their own criteria for accepting 
and then documenting and preparing or 
formatting the data for storage and exchange. 
Examples of national archives of standard 
monitoring data are the National Air Pollutant 
Surveillance Network (NAPS) maintained by 
Environment Canada’s Environmental 
Technology Centre (www.etcentre.org/NAPS/ 
index_e.html), the Air Quality System (AQS), 
which is the USEPA's repository of ambient air 
quality data (www.epa.gov/ttn/airs/airsaqs/), 
Instituto Nacional de Ecología’s archive of 
Mexico’s air quality data (www.ine.gob.mx/) 

and the Air Quality Archive (AQA) for data for 
the United Kingdom (www.airquality.co.uk/ 
archive/data_and_statistics_home.php). Data 
from many European countries are also available 
from AirBase, which is under the European 
Topic Centre on Air and Climate Change 
(http://etc-acc.eionet.europa.eu/ 
databases/airbase/airbasexml/index_html).  

A growing amount of North American AQ 
research data, are being kept in the NARSTO 
archive. These data are available from the 
NASA Langley Atmospheric Science Data 
Center as ASCII data files most of which are in 
the NARSTO Data Exchange Standard (DES) 
format. This format is described on the 
NARSTO Quality Systems Science Center site 
(http://cdiac.ornl.gov/programs/NARSTO/). 
Another common format in which data are 
provided is ‘NASA Ames’ 
(http://cloud1.arc.nasa.gov/solve/archiv/archive.t
utorial.html). Similar to NARSTO, the header 
section of a file contains important metadata, 
including instrument type, instrument name, data 
resolution, and units. The Joint Research Centre 
of the European Commission uses the NASA 
Ames Data Exchange Standard 
(http://airispra.jrc.it/Start.cfm). The netCDF 
(network Common Data Form) library also 
defines a machine-independent format for 
representing scientific data 
(www.unidata.ucar.edu/software/netcdf/). 
Together, the interface, library, and format 
support the creation, access, and sharing of 
scientific data. 
Consistency 

Proper QA and data archiving significantly 
increases the likelihood that measurement data 
are consistent among countries. Utilization of 
instrumentation that has been approved by 
national or international standards organizations 
(e.g., USEPA reference or equivalent methods, 
NIST) also helps ensure consistency. This is 
critical for successful AQ management and thus, 
the more there can be international consensus on 
QA requirements and data storage and sharing 
protocols to better. Clearly, due to individual 
needs of each country and the fact that resources 
for measurements within a country will, by in 
large, be provided by that country implies that 
there will be differences. The people implement-



 34

ing the measurement programs will differ among 
countries. Establishing a small number of 
internationally supported, master stations where 
a wide range of ongoing measurement 
comparisons can be undertaken will provide 
valuable insight regarding consistency.  
 

3.4 Air Quality Modeling for Risk 
Management 

3.4.1  Introduction 
As noted at the beginning of this chapter, a 

crucial component in understanding and 
managing atmospheric pollution is our ability to 
quantify the links between emissions of primary 
pollutants or precursors of secondary pollutants 
on the one hand and ambient pollutant 
concentrations and other physiologically, 

environmentally, and optically important 
properties on the other. Air quality (AQ) models 
provide this capability. Such models consist of 
mathematical representations of the relevant 
physical and chemical atmospheric processes 
that are then solved by means of numerical 
algorithms to obtain pollutant concentration 
fields as functions of space and time for a given 
set of pollutant emissions and meteorological 
conditions (e.g., Peters et al., 1995; Seinfeld and 
Pandis, 1998; Jacobson, 1999; Russell and 
Dennis, 2000; Reid et al., 2003). Figure 3.4.1 
shows a schematic of the atmospheric “process 
web,” including the numerous links and 
interconnections between different atmospheric 
components, that should be represented in an 
AQ model. 

 

 
 
Figure 3.4.1. Schematic diagram of atmospheric physical and chemical components and their 

interactions (adapted from Peters et al., 1995). 
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AQ models are also referred to by other 
names, including chemical transport models, 
long-range-transport models, emissions-based 
models, source-based models, source-oriented 
models, and source models. Depending on the 
particular set of atmospheric processes included 
in such models, they can be classified into 
various categories such as photochemical 
models, acid deposition models, and particulate-
matter or aerosol models (e.g., Seigneur and 
Moran, 2004). All of these models, however, 
include a representation of some atmospheric 
chemical transformations along with 
representations of emissions, transport, 
diffusion, and removal processes. The inclusion 
of chemistry typically requires consideration of 
time scales ranging from fractions of seconds to 
days in order to account for many important 
chemical reactions, and hence AQ model 
domains need to extend at least several hundreds 
of kilometers in the horizontal and up to at least 
the middle of the troposphere in the vertical for 
compatibility with the transport that can occur 
during a multiple-day simulation. Models of air 

pollutants that do not consider chemistry, on the 
other hand, are generally referred to as 
“dispersion models.” 

Figure 3.4.2 shows a flowchart of the data 
flow required to apply an AQ model. In fact, as 
this figure makes clear, it is more accurate to 
refer to this as an AQ modeling system since the 
emissions files and meteorological files that are 
needed to drive an AQ model are provided by 
two other complex computer programs, namely 
an emissions processing system (e.g., Dickson 
and Oliver, 1991; Houyoux et al., 2000) and a 
numerical weather prediction model (e.g., 
Seaman, 2000). An emissions processing system 
in turn requires one or more emission 
inventories as its primary input plus such 
ancillary information as population, 
socioeconomic, and geophysical data. A 
numerical weather prediction model needs 
meteorological observations from a variety of 
observational platforms (e.g., surface 
instruments, rawinsondes, aircraft, satellites) as 
its primary inputs plus various geophysical data 
sets. 

 

Figure 3.4.2. Schematic description of the components of an AQ modeling system (from Seigneur and 
Moran, 2004). 
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AQ modeling systems can be used to quantify 
source-receptor relationships for a wide range of 
air pollutants. They are also the only tool 
available to predict future air concentration and 
deposition patterns based on possible future 
emission levels. That is, they are prognostic in 
nature, unlike receptor models, which depend 
upon ambient measurements and hence are 
applicable only to periods for which 
measurements exist. For AQ models to be 
useful, however, there must already be 
information available about emissions and 
atmospheric measurements. If such data are not 
available for a region, then AQ model 
applications for that region can seldom provide 
much useful guidance for policymakers due to 
the much greater uncertainties associated with 
model predictions due to the uncertainties in 
model inputs. (The need for emissions data is 
obvious as illustrated by Figure 3.4.2. AQ 
measurement data are needed to specify 
chemical initial conditions and boundary 
conditions as well as to evaluate model 
performance.) 

AQ models have been used for decades to 
support AQ management, but at the same time 
they have also undergone continued and rapid 
development. For example, the first meeting in 
the long-running NATO-CCMS series of 
international technical meetings on air pollution 
modeling was held in Eindhoven, The 
Netherlands in 1971. Most air-pollution models 
at that time were short-range, single-source 
dispersion models, and multiple-source models 
for modeling primary pollutants in urban 
settings were just being developed. Some of the 
earliest air-pollution models with 
parameterizations of chemistry were developed 
in the 1970s to simulate either the formation of 
photochemical smog in the Los Angeles basin or 
the long-range transport and transformation of 
air pollutants contributing to acid deposition in 
Europe and in North America. Given this 
considerable history, there have been a number 
of overviews of AQ models and AQ modeling 
over the years, including textbooks such as 
Jacobson (1999) and review articles such as 
Peters et al. (1995), Russell and Dennis (2000), 
Seigneur (2001), and Seigneur and Moran 
(2004).  

The discussion in this section is not intended 
to provide a comprehensive review of AQ 
models and modeling practices. Instead, it builds 
upon the earlier NERAM paper on AQ modeling 
by Reid et al. (2003) and focuses on AQ model 
capabilities and uncertainties and on the 
management of these uncertainties in AQ model 
applications. Section 3.4.2 summarizes the 
variety of ways in which AQ models can 
contribute to AQ risk management. Section 3.4.3 
reviews key technical choices and issues related 
to AQ model applications, especially those 
factors contributing to model uncertainty. Next, 
Section 3.4.4 provides an overview of “best 
practices” for using AQ models and their results 
and for managing associated uncertainties. 
Finally, Section 3.4.5 presents conclusions and 
recommendations. 
 

3.4.2 Applications of Models for AQ Risk 
Management 

AQ models can be applied in a number of 
ways, both directly and indirectly, to support AQ 
management and policy formulation: 
• evaluation of impact of emissions changes, 

including proposed control measures; 
• source apportionment and source attribution; 
• input to conceptual model development; 
• emission inventory evaluation; 
• measurement network and field experiment 

design; 
• AQ forecasting; 
• testing current understanding of science. 
Let us consider each of these applications in 
turn. 

Evaluation of impact of emissions changes. 
The use of AQ models to assess the impact on 
air quality of emission changes due to pollutant 
abatement strategies, new pollution sources, 
population and economic growth, etc. has 
probably been the most common application of 
AQ models. Reid et al. (2003) gave three 
examples of such applications for Spain, 
Australia, and Canada, respectively: (a) the 
assessment of ozone abatement strategies for the 
Greater Madrid area (Palacios et al., 2002); (b) 
the impact of alternative urban forms of the city 
of Melbourne on urban air pollution levels 
(Manins et al., 1998); and (c) the sensitivity of 
PM concentrations in Ontario to changes in 
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emissions of primary PM and PM precursor 
gases. Four more examples include (d) the 
generation of intra-European source-receptor 
matrices (“blame matrices”) by individual 
country for oxidized sulphur, oxidized nitrogen, 
and reduced nitrogen species for 2003 emissions 
and projected 2010 emissions (EMEP, 2005), (e) 
the assessment of the impact of possible 
emission control strategies in the Pearl River 
Delta region of southern China (Streets et al., 
2006), (f) the estimation of AQ benefits from 
implementation of SO2 and NOx emission 
reductions under the 2005 U.S. Clean Air 
Interstate Rule (U.S. EPA, 2005a), and (g) the 
evaluation of the potential impacts of proposed 
SO2 and NOx emission control measures in 
Canada and in the U.S. on acid deposition in 
Canada (Moran, 2005).  

Many of these studies follow a similar 
approach. The AQ model is first run for a “base-
case” simulation, for which the emissions used 
are either historical or current and for which AQ 
measurements are available with which to 
evaluate model performance, and then again for 
one or more emission “scenarios,” in which the 
assumed emissions correspond to a possible 
future state. For the simplest type of emission 
scenario, a “roll-back” scenario, emissions of 

one or more species may be changed by a fixed 
percentage for all source types across either the 
entire model domain or a selected subdomain. In 
more realistic emission scenarios, selected 
source types such as on-road motor vehicles or 
coal-fired electrical generating stations may be 
targeted. Sometimes one of the scenarios 
corresponds to a “business-as-usual” (BAU) 
scenario, in which emissions from the base case 
have been projected forward in time to account 
for population and economic growth and the 
implementation of any scheduled control 
measures expected by the scenario year. A 
companion future-year emission scenario may 
then be run that is identical to the BAU scenario 
except for the addition of a new candidate 
abatement strategy. Comparison of the base 
case, the BAU future scenario, and the 
companion future scenario then allows the 
impact of the abatement strategy to be estimated 
as well as any changes expected in future-year 
AQ relative to current conditions if the 
abatement strategy were or were not 
implemented. As one example, Figure 3.4.3 
shows predictions of effective acidity wet 
deposition from an acid deposition model for 
two cases: a 1989 base case and a realistic 2020 
emissions scenario. 

 

 

  
 

Figure 3.4.3. Plots of annual effective acidity wet deposition (units of eq/ha/yr) predicted by the 
ADOM acid deposition model for (left) 1989 base case and (right) 2020 SO2 and NOx 
emission scenario. Effective acidity is defined to be the sum of sulphate and nitrate wet 
deposition. See Moran (2005) for details.
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Source apportionment and source attribution. 
AQ models can be used to investigate and 
quantify source-receptor relationships in a 
manner that is complementary to the use of 
receptor models, that is, based on a source-
oriented framework rather than on a receptor-
oriented framework (Blanchard, 1999). The 
simplest approach is the so-called “zero-out” 
approach, in which emissions from a particular 
source sector (e.g., petroleum refineries) or from 
a particular jurisdiction (e.g., a city, a 
province/state, or a country) are set to zero while 
leaving emissions from other source sectors or 
jurisdictions unchanged. Predictions from this 
case can then be subtracted from predictions 
from a base run in which all emission sources 
are considered to estimate the impact of the 
targeted source sector or jurisdiction. Two more 
sophisticated approaches are “source tagging” 
and inverse methods. In the former, pollutant 
emissions from particular source sectors or 
geographic locations are tracked in the model as 
separate (“tagged”) species (e.g., Kleinman, 
1987; McHenry et al., 1992; Kleeman and Cass, 
1999a,b; Zhang et al., 2005). In the latter, the 
adjoint of the AQ model can be constructed, 
used to quantify the sensitivity of the model to 
emission inputs, and then combined with 
ambient measurements, or else initial attribution 
results can be refined based on the synthesis 
inversion technique (e.g., Uliasz, 1993; 
Pudykiewicz, 1998; Mendoza-Dominguez and 
Russell, 2001; Mallet and Sportisse, 2005; 
Knipping et al., 2006). 

Input to conceptual model development. An 
AQ conceptual model is a qualitative mental 
model for a geographic region that is based on a 
synthesis and simplification of available AQ 
information obtained from analysis of emissions, 
measurements, and AQ model results to distill 
the primary contributing factors, including key 
emission sources, terrain characteristics, and 
local weather and climate. Useful information 
from AQ models can include results from a suite 
of emissions scenarios, from source 
apportionment studies, and from sensitivity 
studies (see Section 3.4.3). One good example of 
the development of such a conceptual model is 
the analysis described by Pun and Seigneur 
(1999) for PM pollution in California’s San 

Joaquin Valley. A number of the regional 
conceptual models for PM presented in the 2003 
NARSTO PM Science Assessment are based in 
part on AQ model results (NARSTO, 2003). 
One report (U.S. EPA, 2005b) gives a useful list 
of questions and points to consider in 
constructing a conceptual model of ozone 
pollution, including the relative contribution of 
local and distant sources, the role of certain 
weather patterns, and the nature of the local 
chemical regime. Answering some of these 
questions requires the application of AQ models. 
And in the paper by Zunckel et al. (2006), AQ 
model results contribute significantly to a 
conceptual model for surface ozone in southern 
Africa even with very limited availability of 
emissions data and AQ measurements. 

Emission inventory evaluation. Since AQ 
model predictions depend directly on the input 
emission fields, the comparison of AQ model 
predictions with AQ measurements can give 
some indication of the accuracy of the input 
emissions. For example, if AQ model 
predictions are biased significantly high or low 
in a certain region as compared to 
measurements, one possible cause could be a 
corresponding high or low bias in the input 
emissions for that region. Or if measurements 
are stratified into rural and urban sites, then AQ 
model predictions for rural and urban locations 
can be checked independently to see if any 
systematic difference exists for rural vs. urban 
emissions (e.g., Yu et al., 2004). Inverse 
modeling analyses, in which enhanced AQ 
models are combined with ambient 
measurements, provide another, more 
quantitative, approach to estimating emissions 
strengths on either a regional or a global basis 
(e.g., Pudykiewicz, 1998; Mendoza-Dominguez 
and Russell, 2001; Martin et al., 2002; Palmer et 
al., 2003; Gilliland et al., 2006). 

Measurement network and field experiment 
design. AQ models can also be employed as 
sophisticated interpolation schemes since their 
results are based on consistent and 
comprehensive representations of physical and 
chemical laws. For example, an analyst could 
use modelled pollutant fields as “true” patterns 
and then sample the model fields for different 
numbers of grid cells in order to investigate the 
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impact of adding or removing stations to a 
network on the estimation of the actual pollutant 
spatial pattern from measurements, including the 
identification or non-identification of strong 
gradients and “hot spots.” Similarly, scientists 
planning and designing a field experiment could 
use model predictions to help them choose 
measurement site locations, aircraft flight tracks, 
and so on. 

AQ forecasting. When AQ models are used to 
provide policy guidance or to interpret field-
experiment measurements, historical periods are 
typically considered. Such applications are 
referred to as retrospective runs or “hindcasts.” 
If, however, an AQ model can be run in “real 
time” quickly enough (i.e., in a few hours), then 
it can provide an AQ forecast for the next day or 
two, that is, a prospective simulation. Both the 
Canadian and the U.S. national weather services 
now run AQ models in order to issue public 
regional AQ forecasts (e.g., www.msc-
smc.ec.gc.ca/aq_smog/chronos_e.cfm and 
www.nws.noaa.gov/aq/) and the Australian 
national weather service issues AQ forecasts for 
two large urban areas, Melbourne and Sydney 
(Cope et al., 2004). Besides providing useful 
guidance to the public about next-day AQ, such 
forecast programs have the added benefits of (a) 
maintaining or raising public awareness about 
AQ and (b) challenging the AQ models with a 
broader range of weather conditions than they 
are typically subjected to in scenario modeling 
(e.g., photochemical pollutant scenarios are 
almost always summer cases). Performance 
evaluations for AQ forecasts can then provide 
additional insights into model skill and 
reliability and identify model weaknesses (e.g., 
Eder et al., 2006). 

Testing current understanding of science. 
Finally, AQ models provide a means to 
represent and link in a single package our best 
understanding of all of the chemical and 
physical processes relevant to AQ. This 
knowledge synthesis can then be evaluated by 
comparing model predictions with enhanced 
measurement data sets obtained from dedicated 
AQ field campaigns such as SCAQS (1987), 
EMEFS (1988-90), NARE (1993), NARSTO-
NE (1995), ESQUIF (1998-99), BRAVO 
(1999), TexAQS (2000), ACE-ASIA (2001), 

ESCOMPTE (2001), Pacific 2001 (2001), 
TRACE-P (2001), and ICARTT (2004) (e.g., 
Dennis et al., 1993; Berkowitz et al., 1998; 
Heald et al., 2003, 2005; Frost et al., 2006; 
Hodzic et al., 2006; Pun et al., 2006; Smyth et 
al., 2006a). Conversely, an AQ model may also 
be used to help interpret field-campaign 
measurements, which can be difficult for a set of 
measurements of limited duration and restricted 
to a small number of locations due to the 
complexity of geography, meteorology, and 
interconnected chemical and physical processes. 
An AQ model can also be used as a test bed to 
test a new parameterization of a key chemical or 
physical process (e.g., Padro et al., 1993; Pierce 
et al., 1998). Such activities probe both our 
current scientific understanding and our 
representation of it in AQ models, often leading 
to improvements to both. 
 

3.4.3 Key Technical Issues to Consider in 
AQ Modeling Programs 

Worldwide, there are a number of AQ 
modeling systems available, and each is 
typically composed of a set of large, complex 
computer programs. As a consequence, there are 
many choices to be made and issues to be 
considered by a modeller when using an AQ 
modeling system for any application. Such 
choices and issues, however, also need to be 
taken into account by users of model results 
when judging the robustness and reliability of 
those results. Consider the following. 

Choice of model. Some race-track devotees 
offer the advice that there are “different horses 
for different courses.” The same is true of AQ 
models. The first step in applying an AQ model 
is to define the questions that need to be 
answered, and then, if possible, identify or 
develop an appropriate conceptual model. Doing 
so should immediately narrow down the set of 
AQ models that might be used to answer the 
question. For example, a very detailed but 
computationally expensive AQ model might not 
be the best choice for performing a multi-year 
AQ simulation, if such is called for. Another 
consideration is that a model designed to address 
one AQ issue (e.g., photochemical smog) may 
not include representations of all of the 
processes necessary to address another issue 
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(e.g., deposition of acidic species – see Figure 
3.4.1). And a model designed for highly polluted 
atmospheres may not be appropriate to model a 
clean atmosphere and vice versa (e.g., regional 
atmospheric chemistry in source regions vs. 
background global chemistry). 

Model configuration. There are many choices 
to be made in configuring (i.e., setting up) an 
AQ model run. These include (a) the location 
and (b) the size, in both the horizontal and 
vertical, of the model domain, (c) the map 
projection to be used, (d) the grid spacing in 
both the horizontal and vertical, (e) the 
integration time step, (f) the simulation period, 
including any required “spin-up” time (the time 
for atmospheric concentration fields to reach an 
equilibrium between emissions and removal 
processes), (g) the “refresh” rate (the length of 
time that the meteorological model will be run 
before being re-initialized using a new set of 
meteorological analyses), (h) the set of chemical 
species to be considered, (i) the choice (in some 
cases) of parameterizations to be used for 
different chemical and physical processes, (j) the 
specification of initial chemical conditions, (k) 
the treatment of chemical lateral and upper 
boundary conditions, and so on. Each choice has 
implications. For example, the use of large 
horizontal grid spacing may “average out” a 
suspected hot spot or not represent small-scale 
meteorological circulations forced by local 
terrain features. See U.S. EPA (2005b) for a 
discussion about the choice of horizontal grid 
spacing, Berge et al. (2001) for a discussion 
about the specification of chemical initial 
conditions, and Brost (1988) for a discussion 
about the specification of chemical lateral 
boundary conditions. 

Science considerations. One key limitation of 
AQ models is in fact gaps in our scientific 
understanding of the pollutants of interest. For 
example, it is well known that the sources of 
much of the carbonaceous component of 
atmospheric PM2.5 are not presently known in 
spite of the fact that this component typically 
contributes ~40-50% of total PM2.5 mass. 
Another example is our limited understanding of 
nighttime NOx chemistry (e.g., Brown et al., 
2006). A second limitation is the use in current 
AQ models of process parameterizations of 

limited fidelity to the real atmosphere. For 
example, Dabberdt et al. (2004) recently 
identified the need for improved treatments of 
the influence on AQ of (i) the planetary 
boundary layer and (ii) clouds and cloud 
processes. Another important consideration is 
the presence of nonlinear effects in the chemical 
reactions that generate some pollutants of 
interest. For example, the possibility of a 
nonlinear response in sulphate deposition to SO2 
emission reductions due to oxidant limitations 
was identified in the 1980s as a potential 
concern for managing acid deposition (e.g., 
Misra et al., 1989). Nonlinearities in ozone 
photochemistry are also well known (e.g., 
Seinfeld and Pandis, 1998), but PM chemistry 
possesses even more nonlinearities. For 
example, Meng et al. (1997) presented AQ 
model predictions for two simple ozone control 
scenarios run for a Los Angeles smog episode in 
which VOC emission reductions reduced ozone 
levels but caused increases in PM2.5 mass. And 
West et al. (1999) presented AQ model results in 
which reductions in SO2 emissions in eastern 
North America increased PM2.5 concentrations 
due to so-called “nitrate substitution.” Such 
nonlinear responses can further complicate the 
interpretation of model predictions and the 
formulation of possible emission control 
measures. 

Model parameterization and algorithmic 
limitations. Even when AQ processes are well 
understood scientifically, they must still be 
represented mathematically in AQ models by so-
called process parameterizations, and then the 
complex, coupled system of governing equations 
that comprise the AQ model must be solved 
numerically. Both steps have limitations and can 
introduce errors. For example, in many cases a 
number of different parameterizations have been 
developed to describe the same chemical or 
physical process, and these different 
parameterizations will produce different results 
(e.g., Kuhn et al., 1998; Zhang et al., 2000, 
2001; Mallet and Sportisse, 2006). Typically, 
more sophisticated (and complex) 
parameterizations have a greater number of 
parameters and coefficients that must be 
specified, but measurements to do so may be 
scarce or lacking completely. This implies that 
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while a more sophisticated scheme may have the 
potential to do a better job in describing a 
process, there are no guarantees that it will 
actually do a better job in practice. For example, 
some gas-phase chemistry mechanisms consider 
a few dozen species whereas others consider 
hundreds or even thousands of species. But 
besides reaction rates for all of the reactions that 
these species participate in, emissions must also 
be specified for each species as must a number 
of chemical and physical properties such as 
molecular diffusivity and Henry’s Law constant 
that are needed to estimate dry and wet removal 
rates. Such physico-chemical data may not be 
available for every species (e.g., Zhang et al., 
2002). 

The numerical integration of the AQ model 
also introduces errors since it usually requires 
the solution of large coupled systems of both 
ordinary and partial differential equations. As 
discussed by Pielke (1984) and Jacobson (1999) 
among others, finite-difference methods are 
usually employed in both time and space. Any 
time-stepping scheme used to integrate the AQ 
model in time will have truncation errors that 
depend upon both the order of the scheme and 
the chosen time step. Operator splitting is 
usually employed on the right-hand side of the 
governing equations to allow each process 
parameterization to be calculated separately, but 
operator splitting also introduces errors that 
depend upon the order of the splitting and the 
overall time step. Advection is well known to be 
a difficult process to solve, and literally 
hundreds of numerical schemes have been 
developed for advection. All suffer to varying 
degrees from some or all of truncation errors, 
numerical diffusion, phase errors, lack of 
positive definiteness, and violation of mass 
conservation.  

Model “resolution” is another important 
consideration. The choice of a discrete model 
time step and grid-cell size implicitly imposes 
numerical filtering on the model solution. In 
essence, no temporal feature shorter than 2∆t 
and no spatial feature smaller than 2∆x can be 
predicted by the model, and 4∆t and 4∆x are 
probably a more realistic threshold (e.g., Pielke, 
1984; Grasso, 2000). This has important 
implications for processes operating at smaller 

temporal and spatial scales (e.g., Uliasz and 
Pielke, 1998). As a consequence, many 
parameterization schemes to represent the 
influence of subgrid-scale processes at grid scale 
have been developed. One obvious example is 
the representation of point source emissions. In 
any Eulerian (grid) model, all or most point 
sources will be represented as volume sources 
since the emissions are assumed to be well-
mixed throughout at least one grid cell, thus 
introducing large numerical (i.e., artificial) 
diffusion in the vicinity of major point sources. 
To address this problem, which will be most 
pronounced for isolated sources, so-called 
plume-in-grid schemes have been developed to 
represent near-source diffusion and chemistry in 
plumes from major point sources more 
realistically. The treatment of vertical diffusion 
in any AQ model is also intrinsically a subgrid-
scale parameterization since it must represent 
the impact of a spectrum of atmospheric motions 
that cannot be resolved by the model. Cumulus 
parameterizations that represent the impact of 
unresolved clouds on model fields are another 
important class of subgrid-scale parameteri-
zations that are employed in weather and AQ 
models (e.g., Haltiner and Williams, 1980). 

Input data. AQ models require a number of 
input data sets in order to run. First are emission 
input files. Emission rates of a number of 
gaseous and particulate species must be 
specified for each model time step at each model 
grid cell at all levels. As discussed in Section 
3.2, there are significant uncertainties associated 
with such emission files due both to errors in the 
emission inventories themselves and to 
additional uncertainties introduced by the 
emissions processing systems that perform the 
speciation and spatial and temporal 
disaggregation steps needed to create model-
ready emission files (e.g., Hogrefe et al., 2003). 
For large point sources, ancillary information 
about smokestack characteristics such as stack 
height, stack diameter, stack-gas exit velocity, 
and stack-gas exit temperature is also needed. 
And if a future-year scenario is being 
considered, current emission inventories must be 
manipulated and modified to account for all 
assumptions built into the scenario.  

Second, meteorological input files are needed 
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if an “off-line” AQ model is being used (i.e., 
meteorological model and AQ model are 
separate), which is the case for most current AQ 
modeling systems. Meteorology is very 
important as it influences every aspect of the AQ 
system, including (a) natural sources of PM such 
as wind-blown dust and sea salt, (b) plume rise, 
(c) transport and diffusion, (d) gas-phase and 
heterogeneous-phase chemistry (via temperature 
and humidity effects), (e) cloud shading, (f) 
aqueous-phase chemistry, (g) dry removal, and 
(h) wet removal. Third, chemical initial 
conditions must be supplied for all model 
species for every grid cell, chemical upper 
boundary conditions must specified for all 
model species at the top model level, and, for a 
limited-area AQ model, chemical lateral 
boundary conditions must also be specified for 
all model species. And fourth, a number of 
geophysical fields may also be required, 
including terrain height, land-use type, 
vegetation type, aerodynamic surface roughness, 
albedo, sea surface temperature, and soil texture. 
The accuracy and representativeness of all of 
these input files are a key concern, since even 
for a perfect model, the well-known aphorism 
“garbage in, garbage out” still holds. 

Infrastructure considerations. As discussed by 
Reid et al. (2003), AQ modeling is typically 
resource-intensive in terms of model input data, 
people, calendar time, and computer power. In 
order to apply an AQ model for a particular 
case, the input data sets described above must be 
prepared for the model configuration selected, 
including emissions, meteorological, and 
geophysical files, the model must be run, and 
then the model results must be processed, 
analyzed, and interpreted. Typically, a minimum 
of three highly-trained modellers would be 
required to contribute, namely an emissions-
processing specialist, a meteorological-modeling 
specialist, and an AQ-modeling specialist. The 
required calendar time from start to finish, 
including configuring and testing the model for 
the application, would likely be a minimum of 
weeks but more likely months. The minimum 
computer resources needed would be a high-end 
PC with multiple processors, large internal 
memory and disk space, and off-line archiving 
hardware to save numerous large model output 

files. Access to emissions data, meteorological 
data, geophysical data, and AQ measurement 
data is of course assumed as well. 

Model accuracy, sensitivity, and uncertainty. 
For an AQ model’s predictions to be used by 
policymakers, the model and its predictions 
should be credible. To be credible, the model 
should give the right answers for the right 
reasons. The determination of whether a model 
is giving the right answers is addressed by 
model performance evaluations, in which model 
predictions are compared to measurements. 
Model performance evaluation is discussed in 
more detail in the next section. However, there 
are some fundamental issues related to model 
accuracy, sensitivity, and uncertainty that need 
to be kept in mind. For one thing, how is the 
“right answer” determined? For another, how 
can model uncertainty be determined? 

There are actually a surprising number of 
issues that arise in comparing AQ model 
predictions with ambient measurements. The 
biggest one is incommensurability, which arises 
due to the fact that model predictions correspond 
to grid-volume averages whereas measurements 
are typically made at points in space or along 
lines (e.g., aircraft flight tracks, DIAL). For 
example, for a regional-scale AQ model whose 
smallest grid volume is 20 km by 20 km by 50 
meter, how representative would a single point 
measurement be of the 20 km3 of air contained 
in that grid volume? One effort to address this 
question was made during the 1988-90 EMEFS 
field experiment in eastern North America. 
Surface measurements were taken of 24-hour 
SO2, particulate SO4, total NO3 and hourly O3 
concentrations for two years at six clusters of 3 
to 5 stations that fell within the confines of 
model 80-km by 80-km horizontal grid cells. 
Cluster or subgrid daily variability was found to 
be approximately linearly related to mean 
concentration, with the largest variability 
associated with SO2 and minimum O3 (~ ±70%), 
intermediate variability associated with p-SO4 (~ 
±30%) and t-NO3 (~ ±40%), and the smallest 
variability associated with maximum O3 (~ 
±20%) (Seilkop, 1995a,b). Significantly, 
uncertainties due to this subgrid-scale variability 
overwhelmed uncertainties associated with 
instrument error. McNair et al. (1996) performed 
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a somewhat related analysis in the Los Angeles 
basin for O3, NO2, and CO for two 1987 SCAQS 
cases. For circular areas with 25-km radius, 
smaller than those considered during EMEFS, 
they found that local inhomogeneities for these 
three species had normalized gross errors in the 
25-45% range. 

A second issue related to the comparison of 
model predictions and ambient measurements is 
the need to compare “apples with apples.” For 
example, for gas-phase species, AQ model 
predictions correspond to ambient conditions 
whereas some networks report measurements at 
STP. For PM comparisons, model PM 
predictions are calculated based on Stokes 
diameter whereas PM measurements are 
reported using aerodynamic diameter, PM 
measurements unlike models can suffer from 
artifacts related to volatile species such as 
nitrate, some organic compounds, and aerosol-
bound water, and the distinction between 
elemental carbon (EC) and organic carbon (OC) 
is analysis-method-based and can vary from 
network to network (Seigneur and Moran, 
2004). Note that the definition of the EC and OC 
variables predicted by an AQ model also 
depends on the EC-OC analysis method used to 
speciate primary PM emissions. 

Turning to model uncertainty, the discussions 
and conclusions of a 1982 workshop on AQ 
model uncertainty have been described by Fox 
(1984) and Venkatram (1988). The latter 
identified three main sources of model 
uncertainty as “(1) errors in model inputs, (2) 
errors in model formulation, and (3) inherent 
uncertainty associated with the stochastic nature 
of turbulence.” The last source constitutes a 
lower limit on model uncertainty since it cannot 
be reduced even if all model-related errors are 
corrected. One aspect of this inherent 
uncertainty is related to the time and space 
averaging used in measurements vs. the 
ensemble averaging that is used to describe 
atmospheric turbulence. That is, atmospheric 
measurements correspond to samples from a 
single flow realization whereas AQ model 
parameterizations related to diffusion and 
mixing are based on ensemble averages for 
(theoretically) an infinite number of flow 
realizations with identical external conditions 

(e.g., Moran, 2000). 
Reid et al. (2003) have noted that it is not 

possible to quantify overall model uncertainty 
because it is dependent on so many factors, 
some of them dependent on the particular 
application being considered, but also on the 
interactions of these factors. As already 
discussed, these contributing factors include 
errors and uncertainties in input data such as 
emissions, meteorology, and boundary 
conditions, uncertainties in our scientific 
understanding and in process parameterizations, 
errors associated with numerical methods, and 
uncertainties associated with required 
parameters like reaction rates. It is, however, 
possible to quantify some individual sources of 
uncertainty, particularly for numerical methods, 
to identify model sensitivity to various inputs 
and parameters, and finally to compare results 
from parameterizations and even entire models 
in order to try to characterize the range of 
uncertainty. 

Error characterization is generally reported as 
part of the description of new numerical 
methods and parameterization techniques. A 
wide range of sensitivity analysis techniques 
exist, including DDM, ADIFOR, FAST, 
variational techniques, perturbation theory 
techniques, Green’s function techniques, and 
stochastic techniques, that can be used to 
understand which model parameters and input 
variables most influence selected model outputs 
(see Zhang et al. (2005) for a useful literature 
review). Besides being compared side by side 
outside of models, the impact of different 
parameterization schemes can also be compared 
when embedded in a host model (e.g., Padro et 
al., 1993; Mallet and Sportisse, 2006). And 
some studies have compared differences in AQ 
modeling system results due to the use of 
different component models. For example, 
Hogrefe et al. (2003) compared the impact of 
using emissions files constructed by two 
different emissions processing systems from an 
identical emission inventory on the predictions 
of one AQ model. They found differences on the 
order of ±20 ppb in predicted daily maximum 1-
hour ozone concentration. Another source of 
uncertainty is meteorological inputs. Smyth et 
al. (2006b) compared the outputs from one 
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emissions processing system and one regional 
PM model for two sets of meteorological input 
files for the same period that were provided by 
two different meteorological models. An 
operational evaluation of the two meteorological 
models suggested that their performance was 
essentially equivalent, as was the performance of 
the AQ model for the two sets of meteorological 
files, but when grid cells were matched for the 
same time, large variability was observed, 
particularly in aerosol quantities influenced by 
relative humidity. And recently, the performance 
of seven AQ models in predicting ozone was 
compared for the same period (summer 2004) 
and region (eastern U.S.). The range of model 
predictions generally bracketed the 
measurements, and interestingly none of the 
models individually could match the skill of a 
weighted average of the seven forecasts 
(McKeen et al., 2005). 

One other approach to assessing uncertainty is 
to synthesize expert opinion. Seigneur and 
Moran (2004) prepared a table that presented 
qualitative ratings of PM modeller’s level of 
confidence in major aspects of the predictions of 
current PM AQ models. Only a few model 
aspects (SO2, NOx, and p-SO4 air 
concentrations) were judged to have a “high” 
level of confidence. Most aspects were assigned 
“medium” or “low” ratings, and a few aspects, 
such as secondary OC and PM ultrafine mass 
and number concentrations, were assigned “very 
low” ratings. These ratings were based on an 
assessment of all contributing uncertainties, 
including uncertainties associated with the 
emissions of different pollutants and with 
scientific understanding. 
 

3.4.4 Review of Best Practice for Using 
Models for AQ Management 

Let us now build upon the previous sections 
and consider that wry but wise epigram by Box 
(1979): “All models are wrong, but some are 
useful.” That is, in applying models for AQ 
management, we must accept from the start that 
no model is perfect. Instead, as discussed in the 
previous section, AQ model predictions can be 
affected by numerous sources of error and 
uncertainty. How then can we account for the 
resulting uncertainty and apply models in a 

reasonable and defensible way in order to inform 
AQ management? 

To start, how can we judge whether an AQ 
model will in fact be useful? For a model to be 
useful, presumably it must be credible. That is, it 
must have demonstrated sufficient skill and 
reliability that its predictions can be used with 
some confidence by analysts and policymakers 
in the formulation of AQ management strategies. 
Confidence can in turn be built in two ways: 
first, through model verification to assess the 
consistency, completeness, and correctness of 
the model and through model performance 
evaluations to characterize its performance and 
quantify its errors; and second, by applying the 
model in as appropriate, transparent, and 
defensible a manner as possible for the AQ 
issues being considered. 

Model verification and model evaluation. 
Model verification and model performance 
evaluations should always be a required step 
before a model is applied in the policy arena. 
According to Fox (1981) and Russell and Dennis 
(2000), model verification is an assessment of 
the accuracy, reality, or truth of a model. It does 
not require a model to be run. Rather, model 
verification is a “desk check” in which the 
consistency, completeness, and correctness of a 
model’s design, science, process representations, 
algorithms and numerical methods, inputs, and 
source code are examined and assessed. Peer 
reviewers should be involved in such an 
examination, and, ideally, any interested party 
should have unrestricted access to the model 
source code for this purpose.  

Model performance evaluation is the process 
of examining and appraising model performance 
through comparison of model predictions with 
measured AQ data and/or predictions from other 
models (e.g., Fox, 1981; Dennis et al., 1990; 
Russell and Dennis, 2003). There are four main 
types of model performance evaluation: (i) 
operational; (ii) diagnostic; (iii) mechanistic; and 
(iv) comparative (Seigneur and Moran, 2004).  
• An operational evaluation requires the 

statistical evaluation of model predictions of 
a few key pollutants of interest with 
atmospheric measurements over time and 
space scales consistent with the intended 
applications of the model. An operational 
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evaluation is intended to answer the basic 
question: “Are we getting the right answers?” 
Examples of operational evaluations include 
EMEP (2003), Eder and Yu (2006), and Eder 
et al. (2006). A paper by Fox (1981) reviews 
a wide range of statistical measures that have 
been used in operational evaluations, but a 
recent U.S. EPA report (U.S. EPA, 2005b; 
Section 15.2) recommends a small number of 
statistical measures that have been found to 
be representative and useful in evaluating the 
performance of photochemical AQ models. 

• A diagnostic evaluation is more of a 
research-level evaluation and involves an 
examination of model performance at the 
process level for all relevant species. A 
diagnostic evaluation addresses the basic 
question: “Are we getting the right answers 
for the right reasons?” Because diagnostic 
evaluations are more wide-ranging and 
comprehensive than operational evaluations 
and generally make use of non-routine 
measurement data sets such as those from 
specialized field campaigns, they can identify 
the presence of compensating errors or 
excessive “tuning.” Examples of diagnostic 
evaluations include Dennis et al. (1993), 
Karamchandani and Venkatram (1992), 
Sillman et al. (1998), Hogrefe et al. (2001a,b) 
and Biswas et al. (2001), Heald et al. (2005), 
and Yu et al. (2005). Also, Seigneur et al. 
(2000) have described how to optimize the 
design of field studies that will be used in the 
evaluation of PM AQ models, a recent U.S. 
EPA report (U.S. EPA, 2005b; Section 15.3) 
lists some diagnostic analyses that have been 
found useful in assessing the ability of 
photochemical AQ models to predict changes 
in ozone due to changes in emissions of 
ozone precursors, and a recent paper by 
Zhang et al. (2005) examines three diagnostic 
probing tools that have been used to examine 
photochemical AQ model performance. 

• A mechanistic evaluation involves testing 
individual model components (i.e., process 
representations) in isolation against field or 
laboratory measurement. Such evaluations 
address the question: “Are we using good 
parameterizations?” Some examples of 
mechanistic evaluations include Pleim and 

Xiu (1995), Odum et al. (1996), Geron et al. 
(1997), and Zhang et al. (2001). 

• Finally, a comparative evaluation involves a 
side-by-side comparison with another model 
or model component for identical or similar 
inputs. A comparative evaluation addresses 
the basic question: “Are we getting 
comparable answers from comparable 
models?” Examples of comparative evalu-
ations include Alapaty et al. (1997), Hass et 
al. (1997), Kuhn et al. (1998); Ansari and 
Pandis (1999), Zhang et al. (2000), Hogrefe 
et al. (2001a,b), and McKeen et al. (2005). 

Note that the term “model evaluation” denotes 
a process rather than an outcome or conclusion. 
For the terms “model verification” and “model 
validation,” on the other hand, Oreskes et al. 
(1994) argued that numerical models of natural 
systems can never truly be verified or validated, 
since these terms imply the absolute correctness 
of a model. Fox (1981) and Russell and Dennis 
(2000) were careful to restrict their definitions of 
these terms. Model verification, as described 
above, refers to an examination process that at 
best leads to a provisional conclusion. And 
model validation is a process leading to a 
judgement on the quality, suitability, and 
usefulness of a model for a particular application 
that should be based on evidence from both 
model verification and multiple model 
performance evaluations. Such a judgment, 
however, must always be viewed as provisional, 
since additional information such as the results 
of a new evaluation may change the balance of 
evidence. 

It is also important to consider which aspects 
of model performance need to be evaluated. 
Most AQ model evaluations involve case studies 
in which a model is run for a particular period 
using input emissions and meteorology suitable 
for that period and then model performance is 
examined using measurements from that same 
period. However, as already discussed, the most 
common AQ model application is to evaluate the 
impact of emissions changes on AQ. The key 
aspect of model performance in this instance is 
how well the model predicts the atmospheric 
response to the change in input emissions, and 
the approach to the corresponding performance 
evaluation is necessarily somewhat different. 
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For a direct evaluation of model response, AQ 
measurements are required for two different 
periods so that an atmospheric response can be 
calculated, which means that the AQ model 
must be run for the same two periods using 
different input emissions corresponding to each 
of the two periods. Obviously, such a model-
response evaluation is more demanding than the 
usual single-period evaluation since 
considerably more data and more modeling 
effort are required. Confounding issues include 
(i) the need to use emissions for two different 
periods estimated using a consistent 
methodology and (ii) the additional variability 
introduced by interannual meteorological 
variability. As a consequence, published model-
response evaluations are uncommon, but a few 
are available (e.g., Moran and Zheng, 2006).  

Note that so-called “accountability” studies, in 
which the emissions changes that have occurred 
are due primarily to legislated control measures 
and the study goal is to assess the performance 
of the AQ models used to predict the benefits of 
those control measures before the control 
measures were enacted and implemented, are 
also model-response studies. Given the 
considerable time that will have elapsed, 
however, between the time the original AQ 
modeling runs were performed and the time that 
the AQ measurements were made following 
implementation of the control measures of 
interest, it is not likely that the particular version 
of the AQ model (or even the model itself!) is 
still being used. On the other hand, current AQ 
models can also be evaluated in a retrospective 
mode for the same legislated emission changes 
(e.g., 1985 Eastern Canada Acid Rain Program, 
1990 U.S. Clean Air Act Amendments, 1998 
U.S. NOx SIP Call). Note also that in terms of 
U.S. regulatory modeling terminology (e.g., U.S. 
EPA, 2001, 2005b), a model-response 
evaluation is equivalent to the evaluation of 
model-predicted relative reduction factors. 

Finally, in considering the question “How 
accurate does a model need to be,” Reid et al. 
(2003) suggested that the general answer is that 
“… the model predictions should be good 
enough that model uncertainty does not affect 
the decisions that are based on the predictions.” 
In the real world, of course, this may not always 

be the case. How then should models be used 
given such uncertainties? 

Model applications. In their review of 
photochemical models and modeling, Russell 
and Dennis (2000) discussed the modeling 
process as a separate topic. By this they meant 
the set of steps required to apply a model, 
including selection of model domain, grid 
resolution, and model configuration, preparation 
of model input files, model execution, and 
postprocessing and analysis of model 
predictions. The modeling process itself is 
worthy of individual attention because, as 
discussed in the previous section, all of these 
steps may influence the results provided by the 
modeling system. It is thus important to work 
through the modeling process in as reasonable 
and defensible a way as possible. Some limited 
guidance on how to do this does exist. For 
example, the U.S. EPA has prepared several 
documents to help modellers follow “best 
practice” when using regional AQ modeling 
systems for certain regulatory applications (U.S. 
EPA, 2001, 2005b). 

Best practice basically boils down to 
thoughtful and careful selection, set up, and 
application of an AQ modeling system 
accompanied by careful scrutiny and consistency 
checking of the results by various means, 
including the use of measurements and results 
from both alternate configurations of the 
selected AQ model and from other AQ models. 
Figure 3.4.4 describes eight steps of best 
practice for AQ modeling based on guidance 
from two EPA reports (U.S. EPA, 2001, 2005b). 
Most of the following steps will be relevant to 
any AQ model application. 

Let us consider each step in turn. Some 
relevant background material has already been 
discussed in Section 3.4.3. 
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Step 1: Formulate a conceptual model

Step 2: Develop a modelling analysis protocol

Step 3: Select an AQ modelling system

Step 4: Choose the modelling-system configuration

Step 5: Choose the period(s) to be simulated

Step 6: Generate the AQ model input files and evaluate results

Step 7: Perform base-case AQ simulation and evaluate results

Step 8: Perform scenario AQ simulations and evaluate results

 
Figure 3.4.4. Eight-step set of best practices for air quality modeling applications for emission control 

strategies.  
 
1. Formulate a conceptual model. 

Both modeling specialists and modeling 
“clients” should have a conceptual 
understanding of the AQ issue to be considered 
with an AQ model. A conceptual model will 
provide useful guidance for all of the remaining 
modeling-process steps, including the 
identification of stakeholders, the selection and 
configuration of the AQ model, the development 
of candidate emission control scenarios, and the 
assessment of model results. As an example of 
how to formulate a conceptual model, Section 8 
of U.S. EPA (2005b) lists a large number of 
questions about and analyses of emissions data, 

measurement data, and AQ model results that 
could be considered in developing a conceptual 
model for the occurrence of high annual or daily 
ozone levels in a particular locale or region. 
 

2. Develop a modeling/analysis protocol. 
This step may be handled either formally or 

informally, but if model results are to be 
provided to interested parties, it is desirable 
early on to identify all interested parties and to 
obtain agreement on (a) which questions should 
be addressed, (b) what assumptions are 
reasonable to make (e.g., What processes can be 
neglected? How large does the model domain 
need to be?), (c) how the modeling work should 
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be performed, (d) what sorts of results should be 
generated, (e) who should review them and how, 
(f) what the timetable should be, and so on. The 
conceptual model from Step 1 can guide this 
development, for example, by suggesting 
whether long-range transport is likely to be 
important or not, which will help to define the 
geographic extent of the “community” of 
stakeholders. Section 9.2 of U.S. EPA (2005b) 
gives a detailed suggested outline of what such a 
protocol might look like. 
 

3. Select an AQ modeling system. 
Once the questions of interest have been 

identified in Step 2, the next step is to select an 
AQ modeling system that is capable of 
answering those questions and that has been 
judged to be credible and skillful through peer 
review and performance evaluations. 
Availability of model source code, previous 
successful applications to similar problems, and 
advanced science features and tools are useful 
additional selection criteria. As well, the time 
and resources available for the model 
application are practical considerations that may 
also affect the choice of modeling system. 
[McKeen et al. (2005) describe seven current 
PM AQ modeling systems. Other AQ modeling 
systems are described by EMEP (2005), Heald 
et al. (2005), Hodzic et al. (2006), Mallet and 
Sportisse (2005), Meng et al. (1997), and 
Zunckel et al. (2006)] 
 

4. Choose the modeling-system configuration. 
Selection of an AQ modeling system is not 

sufficient by itself. It is also necessary to choose 
a modeling domain and map projection, 
horizontal and vertical grid resolution, level of 
nesting if any, an integration time step, a “spin-
up” or “ramp-up” time, a “refresh” rate for the 
meteorological model, methods to specify 
chemical initial and boundary conditions, and, 
where choices are available, the particular 
physics and chemistry process parameterizations 
to be used in the meteorological and AQ models 
(e.g., convective parameterization, gas-phase 
chemistry mechanism, secondary organic 
aerosol scheme). In the case of an “off-line” AQ 
model, it is also desirable to harmonize to the 
extent possible the AQ model domain, map 
projection, and horizontal and vertical resolution 

with those of the companion meteorological 
model. Many of these choices will be guided by 
the conceptual model from Step 1 and the 
question(s) to be answered from Step 2. For 
example, the relative importance of long-range 
transport and the role, if any, of local terrain-
forced meteorological circulations such as sea-
land breezes will need to be considered. Sections 
12 and 13.2 of U.S. EPA (2005b) provide some 
useful discussions about some of these choices. 
 

5. Choose the period(s) to be simulated. 
This is one of the most open-ended steps, but 

it will be strongly constrained by the question(s) 
to be answered and, if relevant, by the form of 
the AQ standard (e.g., daily or annual, average 
or maximum) or the exact wording of the 
legislation of interest. In the case of short-term 
effects or AQ standards, the conceptual model 
should provide useful guidance, particularly 
related to the meteorological conditions that are 
associated with AQ exceedances. When 
choosing short-term simulation periods, Section 
11 of U.S. EPA (2005b) recommends choosing a 
set of periods (a) for which extensive emissions, 
meteorological, and AQ data sets exist, (b) that 
correspond to a variety of relevant synoptic 
conditions, and (c) that provide enough samples 
to have statistical significance, (d) where each 
period is long enough to span a full synoptic 
cycle (~5–15 days) and includes a relevant 
exceedance. By considering full synoptic cycles, 
the model is forced to simulate the conditions 
before and after an exceedance as well, allowing 
confirmation that the model can forecast non-
exceedances as well as exceedances (e.g., 
Biswas et al., 2001). Additional reasons for 
choosing specific periods include (e) periods 
during intensive AQ field experiments, for 
which more detailed diagnostic evaluations can 
be performed, and (f) periods that have already 
been modeled, so that either model performance 
is already known to be satisfactory or else 
comparable results are available for comparison 
from a peer AQ model. 

In the case of long-term effects or AQ 
standards, correspondingly longer simulation 
periods will be required. Continuing advances in 
computer technology have meant that running 
AQ models for periods as long as a year or more 
has become feasible (e.g., Eder and Yu, 2006), 
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but even so there are still likely to be 
representativeness issues due to interannual 
meteorological variability (e.g., Brook and 
Johnson, 2000). Choosing periods that satisfy 
short-term selection criteria (a), (e), and (f) is 
desirable. 
 

6. Generate the AQ model input files and 
evaluate results. 

This step builds upon the previous four steps 
and will usually require (a) preparing 
geophysical fields for the selected domain and 
grid, (b) running a prognostic meteorological 
model with some type of data assimilation for 
the simulation periods selected in Step 5 to 
prepare meteorological input files, and (c) 
running an emissions processing system for the 
same simulation periods to prepare emissions 
input files for a base case and often a number of 
emission scenarios as well. For any regional 
(i.e., limited-area) AQ modeling system, it may 
also be necessary (d) to run both global 
meteorological models and AQ models or to 
analyze available chemical climatologies (e.g., 
Logan, 1999) in order to provide chemical 
boundary conditions. In preparing the input 
emission files, the size of the model domain will 
dictate how many emission inventories will need 
to be processed. For many North American 
model domains, it will be necessary to process 
both Canadian and U.S. or both U.S. and 
Mexican inventories, or in some cases, all three. 
For AQ modeling elsewhere in the world, such 
as East Asia or Europe, it is also likely that 
multiple national inventories will need to be 
combined.  

As part of this step, it is also important to 
check the input files produced so as to ensure 
that the inputs provided to the AQ model are as 
accurate and credible as possible. As discussed 
before, meteorology drives the AQ simulation 
and the AQ model results are very sensitive to 
the meteorological inputs in complex and 
nonlinear ways. At a minimum, an operational 
evaluation should be performed against 
meteorological measurements: the suite of 
meteorological parameters considered should 
include temperature, humidity, wind speed, wind 
direction, cloud-related fields, precipitation, and, 
if possible, planetary-boundary-layer depth (e.g., 
Hogrefe et al., 2001a, Smyth et al., 2006). 

Evaluation of the processed emissions is not as 
straightforward, but current emissions 
processsing systems produce a range of log files 
and summary tables that can be checked for 
warning and error messages and for continuity, 
consistency, and plausibility, particularly when 
data from more than one country or jurisdiction 
are being combined. Visualization tools can also 
be applied to check the spatial and temporal 
patterns contained in the processed emission 
files. The emission files for various emissions 
scenarios should probably receive even greater 
scrutiny since extensive manipulations were 
likely required to transform current inventories 
to account for various socio-economic 
projections and control measures. The inclusion 
or exclusion (depending upon the 
modeling/analysis protocol) and the treatment of 
natural emissions such as wildfires and 
windblown dust should also be checked. 
Sections 13 and 14 of U.S. EPA (2005b) provide 
useful and detailed discussions concerning this 
step. 
 

7. Perform base-case AQ simulation and 
evaluate results. 

The selected AQ model should have already 
undergone performance evaluations, but these 
may have been for other time periods. In this 
step the AQ model is run for the base case for 
the time periods selected in Step 5 and its 
performance is evaluated so as to characterize 
and quantify the overall modeling system’s 
performance (i.e., including the treatment of 
emissions and meteorology) and to determine 
whether that performance is acceptable. Given 
known model limitations, errors, and 
uncertainties, Russell and Dennis (2000), Reid et 
al. (2003), Seigneur and Moran (2004), and the 
U.S. EPA (2001, 2005b) have all argued that this 
performance evaluation for the base case should 
not be restricted to just a basic operational 
evaluation against surface measurements of one 
or two pollutants, but instead should include a 
broader set of analyses that all feed into a 
“weight-of-evidence” judgement. Clearly, such 
an evaluation is somewhat open-ended and not 
prescriptive, but it should be more likely to lead 
to a correct judgement. 

This broader set of analyses, many of them 
independent tests, could include any of the 
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following possibilities: 
• a more comprehensive operational 

evaluation, including consideration of a suite 
of ozone and PM precursors and other related 
gas-phase species (e.g., NOx, NOy, CO, NH3, 
H2O2, HNO3, individual VOC species) and 
PM chemical components both at the surface 
and aloft (e.g., Biswas et al., 2001); 

• sensitivity tests based on alternate 
configurations of the AQ model, including 
the use of a different emissions processing 
system or meteorological model, different 
rate constants and other model parameters, 
different grid resolutions, different chemistry 
mechanisms, and different boundary 
conditions (e.g., Mallet and Sportisse, 2006); 

• bounding tests in which emissions inputs are 
either increased or decreased to reflect the 
magnitude of uncertainties related to those 
inputs; 

• comparisons with results from peer AQ 
models, including operational AQ forecast 
models, if these have been run for the same 
region and time period(s) (e.g., Hogrefe et 
al., 2001b; Biswas et al., 2001; McKeen et 
al., 2005); 

• if appropriate, comparison with receptor-
based model results (e.g., Marmur et al., 
2006); 

• comparison with observation-based models 
or analyses for chemical regimes, including 
indicator species ratios and gas ratio (e.g., 
Sillman et al., 1997; Stein and Lamb, 2002; 
Martin et al., 2004); and 

• use of model probing techniques, including 
process analysis and direct decoupled method 
(e.g., Zhang et al., 2005). 

 

8. Perform scenario AQ simulations and 
evaluate results. 

In this last step, once the scenario simulations 
have been performed and the results analyzed, 
several additional diagnostic or comparative 
evaluations can be carried out to examine the 
reasonableness of the AQ model’s response to 
specified emission changes, particularly if 
disbenefits as well as benefits are predicted to 
occur. These include (a) applying observation-
based models for chemical regime, model 
probing techniques, and sensitivity/bounding 

tests to the scenarios, (b) comparison with the 
relative response functions predicted by peer AQ 
models for the same set of scenarios, and (c) 
retrospective analyses of model response to 
historical emission changes. 

Seigneur and Moran (2004) described one 
comparative evaluation in which the predictions 
of two different PM AQ models were compared 
for the same three emission-change scenarios. 
Although the magnitudes of the responses for 
ozone, particulate nitrate, and PM2.5 mass were 
all different between the two models for the 
three scenarios, the directions (i.e., sign) of the 
responses were the same, providing support for 
the general conclusions about atmospheric 
response. This directional consistency was 
particularly important in the scenario in which 
VOC emissions were reduced by half: both 
models predicted a ~30% decrease in ozone 
levels (at one station) but an increase in both 
particulate nitrate and PM2.5 mass levels, that is, 
a PM2.5 disbenefit.  

The effort required to follow best AQ 
modeling practice and to carry out each of the 
above eight steps for a model application may 
seem overwhelming. It is worth noting, 
however, that this is the worst case. For a 
jurisdiction with a history of AQ problems, a 
conceptual model (Step 1) likely already exists, 
and some AQ modeling may have already been 
performed. If an active in-house or external AQ 
modeling team with past experience for that 
jurisdiction can be accessed and the AQ 
modeling system that they use is credible, then 
Steps 2, 3, and 4 may not be needed and the 
modelers can begin at Step 5. If a new scenario 
is similar to a past scenario in terms of the 
periods to be simulated (Step 5) or most 
assumptions about emissions (Step 6), then the 
generation of input data sets likely will not 
require as much effort as a completely new 
scenario for a new period and/or new model 
domain. And if the base scenario has been 
considered before, then Step 7 may not be 
required either, so that the completion of Step 8 
is effectively the minimum requirement for a 
new modeling study.  

Furthermore, given the open-endedness of 
some of the above steps and the reality of 
limited resources, it may not be possible to do as 
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thorough a job as policymakers and modellers 
would like to do. The penalty for “cutting 
corners” could but may not be incorrect 
predictions, but at a minimum it will be a greater 
degree of uncertainty and lower confidence in 
those predictions. Application of an AQ 
modeling system always entails many 
compromises, and the work that can be 
performed for the resources that are available is 
just one more compromise. However, the 8-step 
set of modeling best practices described above 
should be viewed as a goal to be approached as 
closely as possible if AQ modelers are to 
provide their clients with the best possible 
guidance. 

 
3.5 Combining Measurements, Emissions 

and Model Output 
Independently, emission inventories, 

measurement programs and models are essential 
tools for AQ risk management and for 
describing the state of the atmosphere. A range 
of new methods are being explored that combine 
emissions and measured and modeled 
concentration fields to expand the capability of 
daily, routine AQ forecasts and improve 
estimates of intra-urban and inter-urban 
variation in long-term or chronic exposure. 
‘Fusing’ these diverse information sources 
together to support a wide range of health and 
air quality studies, as well as real time data 
reporting and analysis, holds considerable 
promise. Figure 3.5.1 presents a conceptual 
picture of the types of multi-scale information 
that can potentially be assimilated or ‘fused’ into 
a complete picture of the spatial variation in air 
pollutant concentrations. Although they are a 
source of input to the AQ models, emission 
inventories may also represent an independent 
source of spatial information and/or a predictor 
for use in empirical models. 

Data assimilation routines using real-time data 
and model output are now being applied on a 
continuous basis to characterize large scale 
patterns across North America. The amount and 
quality of information available varies from 
pollutant to pollutant and geographically. At 
present, in North America, ozone is the most 
advanced, while routines for PM2.5 are being 
developed. Figure 3.5.2 presents ozone 

concentrations across eastern North America 
derived from the Canadian Meteorological 
Centre air quality forecasting system and ozone 
data compiled under the AirNow program 
(Menard and Robichaud, 2005). This image is 
derived from gridded ozone concentrations that 
are produced by combining observations with 
model predicted concentrations to ‘interpolate’ 
and prepare the data for computing future 
concentrations using an air quality forecasting 
model. Hourly concentrations at each grid point 
were used to compute the maximum 8 hr 
average concentration at each point on each day. 
These concentrations were then combined for 
the five month period known as the “ozone 
season.”  

At present AQ models only assimilate surface 
observations, but approaches for “chemical data 
assimilation” are undergoing considerable 
research and development (Menard, 2006). The 
long term goal is to begin utilizing observations 
from satellites and possibly other irregular 
sources of information (e.g., aircraft). The most 
advanced satellite instrument is OMI (Ozone 
Monitoring Instrument) on the Aura spacecraft, 
which was launched in 2004 (Schoeberl et al., 
2004). In terms of the common air pollutants, 
daily, 13x24 km resolution observations for O3, 
NO2, SO2 and aerosols are being measured. 
Devising the appropriate procedures for 
assimilating and/or interpreting such data 
presents a significant scientific challenge. Even 
with a satellite such as Aura, observations are, at 
best, once per day if no clouds obscure the 
measurements.  

The map of NO2 over the northeast of North 
America shown in Figure 3.5.3 provides an 
indication of the capabilities of OMI. It is 
important to note that satellite observations of 
trace gases and aerosols are ‘total vertical 
column’ amounts (i.e., not necessarily surface 
conditions). Research is needed to further 
improve the processing of satellite data from the 
raw signals and from other supporting data (e.g., 
correcting for clouds and variations in surface 
albedo) and then in deriving boundary-layer 
and/or surface concentrations, as well as vertical 
profiles. The latter of which requires, in itself, 
the combined use of AQ and meteorological 
models and surface observations. 
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Figure 3.5.1. Conceptual system of fused or assimilated data for estimating longer-term ambient 

concentration patterns or chronic air pollutant exposure at any geographic location and at 
any scale, from regional to neighbourhood. The system needs to be flexible in terms of 
which source(s) of information the estimate relies most heavily upon at each scale of 
interest and must be capable of providing estimates of location-dependent uncertainty. This 
uncertainty will vary geographically due to inconsistencies in the amount of information 
that is available at the finer scales.  

  

Figure 3.5.2. Average daily 8 hour maximum ozone (ppb) for summer (May-Sept.) 2005. 
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Figure 3.5.3. Nitrogen dioxide (NO2) observations from the ozone monitoring instrument (OMI) on the 

AURA satellite. The red areas show high amounts, the purple areas show regions of clouds 
which shield the sensor from nitrogen dioxide below the clouds. On Jan. 29, 2005, and 
subsequent days there was a large PM2.5 event due to high particle nitrate concentrations. 
This period represents the first wintertime air quality advisory ever issued in the Province 
of Ontario. Air quality alerts were also issued for Michigan during this period. The large 
concentrations over southern Michigan and southwestern Ontario are consistent with the 
surface conditions observed during the period. The OMI instrument was provided to the 
Aura Mission by the Dutch and Finnish space and meteorological agencies. Image 
generated by OMI NO2 team. (contact James F. Gleason, NASA/GSFC). 

 
 



 54

Nonetheless, satellite data represents a 
valuable source of information because it is 
freely available and provides global 
coverage - air pollutant information can be 
obtained where no monitoring exists. In 
addition to the initialization of AQ models, 
the spatial patterns derived from satellite 
observations (i.e., across days, weeks or 
months) are well-suited to determining, in 
an internally-consistent manner, gradients in 
chronic exposure across large regions and 
among different countries. Thus far, aerosol 
observations (PM2.5) have received the most 
attention for this purpose (e.g., Liu et al., 
2005). 

Population exposure to ambient air 
pollution occurs at neighbourhood scales. 
This is beyond the resolution of all the 
sources of information discussed above (i.e., 
Figures 3.5.1, 3.5.2, and 3.5.3). 
Furthermore, it is unlikely that any of these 
will be able to resolve such scales in the 
future and in terms of the types of 
deterministic AQ models discussed above, it 
is not reasonable to expect the meteorology 
to be modeled or for emissions information 
to provided at a fine enough scale. At best, 
new parameterization schemes or 
independent emissions models will be 
developed to treat sub-grid scale features to 
enable AQ models to reliably predict at the 1 
to 5 km resolution. However, research is 
needed to determine how best to use such 
models to predict population exposure 
changes and their uncertainties within these 
grid sizes so that the costs and benefits of 
local scale air quality risk management 
strategies can be evaluated.  

To resolve urban to neighbourhood scale 
exposure patterns for health studies a variety 
of approaches are currently being applied. 
These range from interpolation of 
monitoring site data (e.g., Jerrett et al., 
2005) to exposure surrogates such as 
distance-to-roadway and traffic counts (e.g. 
Hoek et al., 2002) to small scale dispersion 
models and/or combinations of both (Wu et 
al., 2005; Cyrys et al., 2005). The local scale 
exposures of interest have generally been 
associated with traffic since data on road 

networks are readily available. However, a 
wider range of emission sources have been 
included in some ambient air pollutant 
exposure modeling efforts (e.g., Gram et al., 
2003). 

Geographic Information Systems (GIS) 
have proven to be useful for mapping 
exposure patterns, integrating different 
sources of information and in developing 
land-use regression models (Brauer 2006a). 
Intra-urban chronic exposure estimates have 
been derived using LUR for several cities 
(Brauer et al., 2003; Kanaroglou et al., 2005; 
Sahsuvaroglu et al., 2006; Gilbert et al., 
2005; Silva et al., 2006; Setton et al., 2006; 
Luginaah et al., 2006; Brauer 2006b). Cyrys 
et al. (2005) compared both LUR and 
dispersion model estimates for NO2 and 
PM2.5 and reported that for their cohort of 
interest in Munich, Germany, the two 
approaches led to similar exposure 
classifications. These results and most other 
LUR efforts have focused on traffic-related 
pollutants (e.g., NO2 and sometimes PM2.5). 
However, recent studies in Windsor, 
Ontario, have expanded the dependent 
variables in LUR to include SO2, benzene 
and toluene (Wheeler et al., 2006).  

The empirical model image in Figure 3.5.1 
is an example of the NO2 surface predicted 
by LUR for Toronto, Ontario (Kanaroglou et 
al., 2005). The small scale spatial variability 
(i.e., neighbourhood scale or better) 
produced by applying the LUR for all points 
in a GIS database appears more-realistic 
compared to the pattern obtained using 
interpolation, with respect to the known 
distribution of traffic (Jerrett et al., 2004). A 
LUR model, once developed for the area of 
interest, also provides the capability of 
estimating chronic exposures for each 
member of a health study cohort if their 
addresses are known. Ideally, such estimates 
should be spot-checked with independent 
measurements within residential areas, 
inside a variety of homes and also in 
comparison to personal exposure 
measurements. This could potentially lead to 
the coupling of LUR models for outdoor, at 
home, concentrations with individual 
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exposure models that consider home 
characteristics and time activity. 

 
3.6 Conclusions 

Improving or maintaining air quality is a 
science and technology based activity, 
requiring governmental commitment to 
invest in the tools needed to reach informed 
decisions. In jurisdictions where AQ 
management has not been a priority, 
solutions to the current problems may be 
relatively straightforward, such as 
eliminating local/residential burning for 
cooking and heating fuels. However, even 
when all the obvious and/or cost-effective 
measures have been implemented AQ 
problems can still persist and even become 
worse due to economic and/or population 
growth. In this situation, which may be the 
case for many developed countries, the best 
approach(es) to improve AQ are not as easy 
to identify. Accurate, comprehensive 
emission inventories, AQ measurements and 
models are therefore essential to make 
headway. However, they need to be applied 
intelligently following, as much as possible, 
best practices as informed by experience. 
This includes a well-developed conceptual 
model of the relationship between emissions 
and observations. To make headway air 
quality targets (or standards or objectives) 
are also needed and clearly, public health 
protection is one of the main motivations 
behind such targets. This necessitates 
establishing a quantitative link between air 
pollutant levels and health impacts, such as a 
concentration response relationship, which 
is dependent upon the availability of 
measurements. However, there is a need to 
develop air quality risk management 
methods that integrate multiple 
environmental issues, not just human health 
concerns.  

This chapter reviewed several key issues 
related to the development, use and 
improvement of emissions, measurements 
and models for AQ management. Each can 
provide useful information for AQ risk 
management, and when they are considered 
together they can provide additional insights 

and guidance. However, AQ models depend 
upon the availability of information about 
measurements, emissions, and meteorology 
whereas the converse is not true. AQ 
modeling should thus follow and not 
precede the development of measurement 
and emissions information. 

Accurate emission inventories are the 
foundation of all air quality management 
programs. They provide the essential 
information needed to understand the effects 
of air pollutants on human and ecosystem 
health, to identify which sources need to be 
controlled in order to protect health and the 
environment, and they provide the 
information needed to determine whether or 
not actions taken to reduce emissions have 
been effective. 

In principle, the development of emission 
inventories would seem to be a relatively 
straightforward process, but in practice their 
production is found to be a very complex 
and demanding task. As initial actions to 
reduce emissions from large point sources 
find success, understanding and addressing 
residual air quality problems requires greater 
effort and emission inventories of increasing 
sophistication. Fortunately, much has been 
learned over the past 40 years that can make 
the development of new inventories a more 
systematic process. New measurement 
technologies and better understanding of the 
chemistry and physics of pollutant formation 
will continue to multiply the number of 
sources that can be measured directly and 
assure that these measurements reflect what 
is actually entering the atmosphere. 
Likewise, new methods for deducing and 
characterizing uncertainty will result in 
better understanding of the accuracy with 
which we know primary and precursor 
emissions. Finally, better data management 
software, the ubiquitous availability of low-
cost, high-end computing, and growing 
availability of high bandwidth 
communications have made the 
development, maintenance, dissemination 
and use of large data sets practical for nearly 
everyone. 

Air quality measurements are essential for 
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public health protection. They define the 
problem to be managed, serve as the basis 
for determining the current level of health 
risk a given population is experiencing and 
consequently for prioritizing the need for 
reductions. Measurements are also critical 
for evaluating the effectiveness of AQ 
management strategies and altering such 
strategies if the desired outcomes are not 
being achieved.  

Detailed analysis of measurement data can 
help target the most effective approaches to 
reduce ambient concentrations and, 
hopefully in the future, the optimum (i.e., 
cost effective) approach to protect public 
health. Full understanding of particulate 
matter, in terms of impacts, formation 
processes and optimal control strategies 
remains the air pollutant requiring the 
greatest attention in terms of detailed 
measurement studies and data interpretation 
efforts. 

When measurement programs are 
forward-looking, pushing the limits of what 
can be routinely monitored, they can provide 
new insights regarding additional air 
pollutants of concern and can support future 
epidemiological studies to uncover new 
risks to the population. Ultimately, the 
availability of air quality measurements 
dictates what can be studied and thus, there 
is a continual need to expand the pollutants 
measured and the location and temporal 
resolution of such measurements. 
Combining the data from a variety of 
measurement approaches, including remote 
sensing, with the data from both physical 
and empirical models provides an improved 
picture of spatial and temporal patterns. 
These improvements are providing better 
AQ information to scientists, the public and 
decision-makers and ultimately can be 
expected to lead to a better understanding of 
AQ impacts and of possible approaches to 
protect public health.  

AQ models are able to quantify the links 
between emissions of primary pollutants or 
precursors of secondary pollutants and 
ambient pollutant concentrations and other 
physiologically, environmentally, and 

optically important properties. They are the 
only tool available that can predict, based on 
possible future emission levels, spatially and 
temporally resolved air concentration and 
deposition patterns and that can address 
multiple pollutants simultaneously and 
quantify possible co-benefits. AQ models 
can also account for the impacts of nonlinear 
processes and are able to predict whether a 
candidate abatement strategy will lead to 
benefits or disbenefits or both.  

There are a large number of possible 
sources of AQ model error and uncertainty 
ranging from not understanding the 
underlying science and truncation errors 
intrinsic to the numerical techniques 
employed by the model to uncertainties in 
the input emissions and model-measurement 
incommensurability. There are even more 
ways for these numerous sources of error 
and uncertainty to interact, often nonlinearly 
and sometimes cancelling out (so-called 
“compensating errors”). As a consequence, 
AQ model uncertainty is impossible to 
quantify but it is possible to characterize 
through model performance evaluations, 
model intercomparisons, and sensitivity and 
bounding tests. There are also varying 
degrees of uncertainties across pollutants 
and their components.  

Box (1979) wrote that “All models are 
wrong, but some are useful.” For an AQ 
model to be “useful,” it should be credible. 
For it to be credible, it should give the right 
answers for the right reasons. AQ model 
credibility is established through model 
review, model performance evaluations, and 
successful model applications. However, 
model credibility is always provisional, so 
model evaluation (and model improvement) 
should be an ongoing process.  

A key question in applying AQ models is: 
“How accurate does a model need to be?” 
Reid et al. (2003) suggested that the general 
answer is that “model predictions should be 
good enough that model uncertainty does 
not affect the decisions that are based on the 
predictions.” AQ modeling uncertainty can 
be managed and limited by following “best 
practice” at all stages of the modeling 
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process. Best practice basically boils down 
to thoughtful and careful selection, set up, 
and application of a credible AQ modeling 
system accompanied by careful scrutiny and 
consistency checking of the results by 
various means, including measurements and 
results from both alternate configurations of 
the selected AQ model and from other AQ 
models. The credibility of the model 
predictions for a given application is then 
determined based on a weight-of-evidence 
judgment that considers all of the evaluation 
results. This process is not at all “cut and 
dried” — it is much more in the nature of 
applied research than a routine activity. 
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