MicroFac - A New Microscale Motor Vehicle Emission Model: Determination of Neighbourhood Air Pollution for Human Exposure Assessment

Rakesh Singh and James Sloan
Waterloo Centre for Atmospheric Sciences
University of Waterloo
http://www.artscape.waterloo.ca/

Project Focus and Purpose

- **MicroFac** – the most accurate tool to date for determining emissions from traffic on busy transportation corridors for quantifying exposure in a human health context.
- Target audience: provincial policy makers, municipal/transportation planners, public health units – tool for Environmental Impact Assessment, Growth Management Strategies, and Transportation Demand Management.
- Emphasize local action and policy advocacy addressing air pollution

Research Considerations

- Increases in vehicular traffic offset emission control improvements
- Ambient concentrations of pollutants do not reflect personal exposures accurately
- Greater exposure of pedestrians, urban cyclists/joggers, etc. to vehicular pollutants
- Greater danger to occupations and age groups spending significant periods outdoors
- Sub-populations need to be identified geospatially in proximity to points of exposure
- Maps can be generated for any municipality with such variables as:
 - Demographics (e.g. <18 yrs, >65 yrs. Old)
 - Aggregated cardio-respiratory disease morbidity data plotted by postal code
 - Locations of parks, school fields, retirement homes, hospitals, community centres and sports fields
- All show proximity to major transportation corridors

Emissions from Transport Sector

- Road vehicle emissions in Ontario account for:
 - 45% of Carbon Monoxide (CO), 35% of Nitrogen Oxides (NOx), 22% of Volatile Organic Compounds (VOCs), 12% of Particulate Matter
 - more than half of transportation related GHG emissions
- Densely populated downtown cores, such as Toronto, have much higher proportion of air pollution from local transportation sources at street level
 - 90% CO, 80% NOx, 60% SOx

MOBILE Emission Model

- **MOBILE modeling approach**
 - Time averaged emission estimates over a large area based on Vehicle Kilometre Traveled (VKMT)
- **MOBILE is designed for**
 - Designed for county-scale (minimum), not street-scale, emission estimates
 - Not designed for application for air quality and human exposure modelling

MicroFac Microscale Emission and Exposure Model

- **MicroFac** is a site-specific vehicle emission model based on real-time vehicle fleet to provide pollutant concentration in roadway environments
- **MicroFac** gives emissions in significant microenvironments such as roadside, in-vehicle, street canyons, etc.
- United States Environmental Protection Agency’s Consolidated Human Activity Database (CHAD) provides input data for exposure modeling and risk assessments
- CHAD must be integrated with local data such as time spent outdoors
- Local transportation data and traffic counts are also needed

Application in Air Quality Modeling

- **MicroFac Process Flow Diagram**
 - Site-specific meteorology
 - MicroFac
 - Dispersion Model
- **MicroFac** provides emissions in terms of the specific vehicle fleet being considered
- **MicroFac** gives emissions from a specified fleet built up from the contributions of the individual vehicles
- Provides lane-by-lane emissions at very high temporal (starting from 5 minutes) and spatial resolution (starting from 10 metres)
- Input requirements are simple
 - Date and time
 - Ambient temperature and relative humidity
 - Average vehicle speed
 - Road gradient
 - Fuel composition
 - Vehicle fleet characterization
- Designed for application in:
 - Street level air quality modelling
 - Identifying hot spots
 - Human exposure assessment
 - Project level analysis

Conclusions

- Site-specific real-time emissions are needed for modeling air transport/dispersion and human exposure in various roadway microenvironments
- MicroFac models will provide emissions at fine resolution critical for the prediction of traffic related impacts on local air quality and assessment of exposure conditions in micro-environments